An M/PH/K queue with constant impatient time View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-02

AUTHORS

Qi-Ming He, Hao Zhang, Qingqing Ye

ABSTRACT

This paper is concerned with an M/PH/K queue with customer abandonment, constant impatient time, and many servers. By combining the method developed in Choi et al. (Math Oper Res 29:309–325, 2004) and Kim and Kim (Perform Eval 83–84:1–15, 2015) and the state space reduction method introduced in Ramaswami (Stoch Models 1:393–417, 1985), the paper develops an efficient algorithm for computing performance measures for the queueing system of interest. The paper shows a number of properties associated with matrices used in the development of the algorithm, which make it possible for the algorithm, under certain conditions, to handle systems with up to one hundred servers. The paper also obtains analytical properties of performance measures that are useful in gaining insight into the queueing system of interest. More... »

PAGES

139-168

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00186-017-0612-2

DOI

http://dx.doi.org/10.1007/s00186-017-0612-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092086510


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Management Sciences, University of Waterloo, 200 University Avenue West, N2L 3G1, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Qi-Ming", 
        "id": "sg:person.014357222045.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014357222045.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "Department of Management Engineering, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Hao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.410579.e", 
          "name": [
            "Department of Statistics and Financial Mathematics, Nanjing University of Science and Technology, 210094, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Qingqing", 
        "id": "sg:person.014776737653.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014776737653.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/s0021900200031685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000408255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.peva.2007.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004520955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1019196416987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008133335", 
          "https://doi.org/10.1023/a:1019196416987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010820112080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008385265", 
          "https://doi.org/10.1023/a:1010820112080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200029430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008779210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.peva.2013.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009175645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2012.02.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009703052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.peva.2014.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015493968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0001867800022989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019314370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0001867800019777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023221539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11134-015-9455-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023222065", 
          "https://doi.org/10.1007/s11134-015-9455-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11134-005-6972-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024561346", 
          "https://doi.org/10.1007/s11134-005-6972-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15326348508807020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025850932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02564722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027043392", 
          "https://doi.org/10.1007/bf02564722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02564722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027043392", 
          "https://doi.org/10.1007/bf02564722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15326348508807021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029397276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15326349808807477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034005973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015781818360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041981868", 
          "https://doi.org/10.1023/a:1015781818360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.peva.2005.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042869817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0001867800020036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044275272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-5316(98)00042-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047531316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11134-008-9078-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048301589", 
          "https://doi.org/10.1007/s11134-008-9078-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11134-013-9354-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050634315", 
          "https://doi.org/10.1007/s11134-013-9354-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010009304213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053438461", 
          "https://doi.org/10.1023/a:1010009304213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/47.1-2.45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059416938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/09-aap674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064390654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/moor.1030.0081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064722741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/moor.1100.0443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064723134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/msom.4.3.208.7753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064725386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.5.5.644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064731445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.5.5.650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064731446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3213871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070228056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9780898719734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098555830"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02", 
    "datePublishedReg": "2018-02-01", 
    "description": "This paper is concerned with an M/PH/K queue with customer abandonment, constant impatient time, and many servers. By combining the method developed in Choi et al. (Math Oper Res 29:309\u2013325, 2004) and Kim and Kim (Perform Eval 83\u201384:1\u201315, 2015) and the state space reduction method introduced in Ramaswami (Stoch Models 1:393\u2013417, 1985), the paper develops an efficient algorithm for computing performance measures for the queueing system of interest. The paper shows a number of properties associated with matrices used in the development of the algorithm, which make it possible for the algorithm, under certain conditions, to handle systems with up to one hundred servers. The paper also obtains analytical properties of performance measures that are useful in gaining insight into the queueing system of interest.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00186-017-0612-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053187", 
        "issn": [
          "1432-2994", 
          "1432-5217"
        ], 
        "name": "Mathematical Methods of Operations Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "87"
      }
    ], 
    "name": "An M/PH/K queue with constant impatient time", 
    "pagination": "139-168", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "89f7bebf90ed9391cb9ec689dd8ca09e855d50a9322a4989ba4834c4917457e3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00186-017-0612-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092086510"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00186-017-0612-2", 
      "https://app.dimensions.ai/details/publication/pub.1092086510"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000548.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00186-017-0612-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00186-017-0612-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00186-017-0612-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00186-017-0612-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00186-017-0612-2'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00186-017-0612-2 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ndfe807595f51468588775623821c9a26
4 schema:citation sg:pub.10.1007/bf02564722
5 sg:pub.10.1007/s11134-005-6972-y
6 sg:pub.10.1007/s11134-008-9078-5
7 sg:pub.10.1007/s11134-013-9354-x
8 sg:pub.10.1007/s11134-015-9455-9
9 sg:pub.10.1023/a:1010009304213
10 sg:pub.10.1023/a:1010820112080
11 sg:pub.10.1023/a:1015781818360
12 sg:pub.10.1023/a:1019196416987
13 https://doi.org/10.1016/j.ejor.2012.02.029
14 https://doi.org/10.1016/j.peva.2005.07.013
15 https://doi.org/10.1016/j.peva.2007.07.003
16 https://doi.org/10.1016/j.peva.2013.04.001
17 https://doi.org/10.1016/j.peva.2014.11.002
18 https://doi.org/10.1016/s0166-5316(98)00042-x
19 https://doi.org/10.1017/s0001867800019777
20 https://doi.org/10.1017/s0001867800020036
21 https://doi.org/10.1017/s0001867800022989
22 https://doi.org/10.1017/s0021900200029430
23 https://doi.org/10.1017/s0021900200031685
24 https://doi.org/10.1080/15326348508807020
25 https://doi.org/10.1080/15326348508807021
26 https://doi.org/10.1080/15326349808807477
27 https://doi.org/10.1093/biomet/47.1-2.45
28 https://doi.org/10.1137/1.9780898719734
29 https://doi.org/10.1214/09-aap674
30 https://doi.org/10.1287/moor.1030.0081
31 https://doi.org/10.1287/moor.1100.0443
32 https://doi.org/10.1287/msom.4.3.208.7753
33 https://doi.org/10.1287/opre.5.5.644
34 https://doi.org/10.1287/opre.5.5.650
35 https://doi.org/10.2307/3213871
36 schema:datePublished 2018-02
37 schema:datePublishedReg 2018-02-01
38 schema:description This paper is concerned with an M/PH/K queue with customer abandonment, constant impatient time, and many servers. By combining the method developed in Choi et al. (Math Oper Res 29:309–325, 2004) and Kim and Kim (Perform Eval 83–84:1–15, 2015) and the state space reduction method introduced in Ramaswami (Stoch Models 1:393–417, 1985), the paper develops an efficient algorithm for computing performance measures for the queueing system of interest. The paper shows a number of properties associated with matrices used in the development of the algorithm, which make it possible for the algorithm, under certain conditions, to handle systems with up to one hundred servers. The paper also obtains analytical properties of performance measures that are useful in gaining insight into the queueing system of interest.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N41c1715302a24e208469494d6c3254a3
43 N95b88dc8f11744b899e1e23119382642
44 sg:journal.1053187
45 schema:name An M/PH/K queue with constant impatient time
46 schema:pagination 139-168
47 schema:productId N6b1900b92fd54543babcc2d6292b5fc6
48 N91bc79dec9014fe4b29da09dc99ba782
49 Nc4119f0cbe1246f0902157d4a2a57964
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092086510
51 https://doi.org/10.1007/s00186-017-0612-2
52 schema:sdDatePublished 2019-04-11T02:18
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N152ceb459fcb4566bfea7633d2e7257f
55 schema:url https://link.springer.com/10.1007%2Fs00186-017-0612-2
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N152ceb459fcb4566bfea7633d2e7257f schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N41c1715302a24e208469494d6c3254a3 schema:volumeNumber 87
62 rdf:type schema:PublicationVolume
63 N5e7f5e1e49754fc390960c25ef5aaa56 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
64 schema:familyName Zhang
65 schema:givenName Hao
66 rdf:type schema:Person
67 N6b1900b92fd54543babcc2d6292b5fc6 schema:name readcube_id
68 schema:value 89f7bebf90ed9391cb9ec689dd8ca09e855d50a9322a4989ba4834c4917457e3
69 rdf:type schema:PropertyValue
70 N91bc79dec9014fe4b29da09dc99ba782 schema:name dimensions_id
71 schema:value pub.1092086510
72 rdf:type schema:PropertyValue
73 N95b88dc8f11744b899e1e23119382642 schema:issueNumber 1
74 rdf:type schema:PublicationIssue
75 Nbadb0ebd3cca469dac95fe425ff177bb rdf:first N5e7f5e1e49754fc390960c25ef5aaa56
76 rdf:rest Nce7178d670fe4ce8a204b44224bbb5c3
77 Nc4119f0cbe1246f0902157d4a2a57964 schema:name doi
78 schema:value 10.1007/s00186-017-0612-2
79 rdf:type schema:PropertyValue
80 Nce7178d670fe4ce8a204b44224bbb5c3 rdf:first sg:person.014776737653.85
81 rdf:rest rdf:nil
82 Ndfe807595f51468588775623821c9a26 rdf:first sg:person.014357222045.72
83 rdf:rest Nbadb0ebd3cca469dac95fe425ff177bb
84 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
85 schema:name Engineering
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
88 schema:name Materials Engineering
89 rdf:type schema:DefinedTerm
90 sg:journal.1053187 schema:issn 1432-2994
91 1432-5217
92 schema:name Mathematical Methods of Operations Research
93 rdf:type schema:Periodical
94 sg:person.014357222045.72 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
95 schema:familyName He
96 schema:givenName Qi-Ming
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014357222045.72
98 rdf:type schema:Person
99 sg:person.014776737653.85 schema:affiliation https://www.grid.ac/institutes/grid.410579.e
100 schema:familyName Ye
101 schema:givenName Qingqing
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014776737653.85
103 rdf:type schema:Person
104 sg:pub.10.1007/bf02564722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027043392
105 https://doi.org/10.1007/bf02564722
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s11134-005-6972-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1024561346
108 https://doi.org/10.1007/s11134-005-6972-y
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s11134-008-9078-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048301589
111 https://doi.org/10.1007/s11134-008-9078-5
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11134-013-9354-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050634315
114 https://doi.org/10.1007/s11134-013-9354-x
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s11134-015-9455-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023222065
117 https://doi.org/10.1007/s11134-015-9455-9
118 rdf:type schema:CreativeWork
119 sg:pub.10.1023/a:1010009304213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053438461
120 https://doi.org/10.1023/a:1010009304213
121 rdf:type schema:CreativeWork
122 sg:pub.10.1023/a:1010820112080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008385265
123 https://doi.org/10.1023/a:1010820112080
124 rdf:type schema:CreativeWork
125 sg:pub.10.1023/a:1015781818360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041981868
126 https://doi.org/10.1023/a:1015781818360
127 rdf:type schema:CreativeWork
128 sg:pub.10.1023/a:1019196416987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008133335
129 https://doi.org/10.1023/a:1019196416987
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.ejor.2012.02.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009703052
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.peva.2005.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042869817
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.peva.2007.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004520955
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.peva.2013.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009175645
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.peva.2014.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015493968
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0166-5316(98)00042-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047531316
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1017/s0001867800019777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023221539
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1017/s0001867800020036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044275272
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1017/s0001867800022989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019314370
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1017/s0021900200029430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008779210
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1017/s0021900200031685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000408255
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1080/15326348508807020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025850932
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1080/15326348508807021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029397276
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1080/15326349808807477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034005973
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1093/biomet/47.1-2.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059416938
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1137/1.9780898719734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098555830
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1214/09-aap674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064390654
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1287/moor.1030.0081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064722741
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1287/moor.1100.0443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064723134
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1287/msom.4.3.208.7753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064725386
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1287/opre.5.5.644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064731445
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1287/opre.5.5.650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064731446
174 rdf:type schema:CreativeWork
175 https://doi.org/10.2307/3213871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070228056
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.410579.e schema:alternateName Nanjing University of Science and Technology
178 schema:name Department of Statistics and Financial Mathematics, Nanjing University of Science and Technology, 210094, Nanjing, China
179 rdf:type schema:Organization
180 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
181 schema:name Department of Management Sciences, University of Waterloo, 200 University Avenue West, N2L 3G1, Waterloo, ON, Canada
182 rdf:type schema:Organization
183 https://www.grid.ac/institutes/grid.49470.3e schema:alternateName Wuhan University
184 schema:name Department of Management Engineering, Wuhan University, 430072, Wuhan, China
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...