On a conjugate directions method for solving strictly convex QP problem View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Andrzej Stachurski

ABSTRACT

Problem of solving the strictly convex, quadratic programming problem is studied. The idea of conjugate directions is used. First we assume that we know the set of directions conjugate with respect to the hessian of the goal function. We apply n simultaneous directional minimizations along these conjugate directions starting from the same point followed by the addition of the directional corrections. Theorem justifying that the algorithm finds the global minimum of the quadratic goal function is proved. The way of effective construction of the required set of conjugate directions is presented. We start with a vector with zero value entries except the first one. At each step new vector conjugate to the previously generated is constructed whose number of nonzero entries is larger by one than in its predecessor. Conjugate directions obtained by means of the above construction procedure with appropriately selected parameters form an upper triangular matrix which in exact computations is the Cholesky factor of the inverse of the hessian matrix. Computational cost of calculating the inverse factorization is comparable with the cost of the Cholesky factorization of the original second derivative matrix. Calculation of those vectors involves exclusively matrix/vector multiplication and finding an inverse of a diagonal matrix. Some preliminary computational results on some test problems are reported. In the test problems all symmetric, positive definite matrices with dimensions from 14×14 to 2000×2000 from the repository of the Florida University were used as the hessians. More... »

PAGES

523-548

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00186-017-0607-z

DOI

http://dx.doi.org/10.1007/s00186-017-0607-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091770989


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Warsaw University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.1035.7", 
          "name": [
            "Institute of Control and Computation Engineering, Warsaw University of Technology, Nowowiejska 15/19, 00-665, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stachurski", 
        "givenName": "Andrzej", 
        "id": "sg:person.015130437311.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015130437311.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/comjnl/7.2.149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002056752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10589-015-9765-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002234428", 
          "https://doi.org/10.1007/s10589-015-9765-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7949(01)00025-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004208639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1916461.1916464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008389208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1011083926", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2272-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011083926", 
          "https://doi.org/10.1007/978-1-4757-2272-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2272-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011083926", 
          "https://doi.org/10.1007/978-1-4757-2272-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2049662.2049663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021694365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11590-016-1060-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023155605", 
          "https://doi.org/10.1007/s11590-016-1060-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11590-016-1060-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023155605", 
          "https://doi.org/10.1007/s11590-016-1060-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(95)00832-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024110568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/62038.62043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027688260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-0427(00)00408-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028313008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1377603.1377606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033337951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0041-5553(69)90035-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036282328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nla.499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038792121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1587/nolta.3.103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043066997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-06865-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043368623", 
          "https://doi.org/10.1007/978-3-662-06865-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-06865-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043368623", 
          "https://doi.org/10.1007/978-3-662-06865-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470400531.eorms0183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044221281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13160-014-0154-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046690484", 
          "https://doi.org/10.1007/s13160-014-0154-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-5041-2940-4_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050156901", 
          "https://doi.org/10.1007/978-1-5041-2940-4_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02830245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051495823", 
          "https://doi.org/10.1007/bf02830245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02830245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051495823", 
          "https://doi.org/10.1007/bf02830245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03031308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052740457", 
          "https://doi.org/10.1007/bf03031308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comjnl/7.2.155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052963131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0962492916000076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054905321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/twc.2010.110510.100555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061827507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/030601880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062842786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/08074008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062855310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/080740167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062855315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1052623497318992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062883602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6028/jres.049.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073597164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/m2an/196903r100351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083713037"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Problem of solving the strictly convex, quadratic programming problem is studied. The idea of conjugate directions is used. First we assume that we know the set of directions conjugate with respect to the hessian of the goal function. We apply n simultaneous directional minimizations along these conjugate directions starting from the same point followed by the addition of the directional corrections. Theorem justifying that the algorithm finds the global minimum of the quadratic goal function is proved. The way of effective construction of the required set of conjugate directions is presented. We start with a vector with zero value entries except the first one. At each step new vector conjugate to the previously generated is constructed whose number of nonzero entries is larger by one than in its predecessor. Conjugate directions obtained by means of the above construction procedure with appropriately selected parameters form an upper triangular matrix which in exact computations is the Cholesky factor of the inverse of the hessian matrix. Computational cost of calculating the inverse factorization is comparable with the cost of the Cholesky factorization of the original second derivative matrix. Calculation of those vectors involves exclusively matrix/vector multiplication and finding an inverse of a diagonal matrix. Some preliminary computational results on some test problems are reported. In the test problems all symmetric, positive definite matrices with dimensions from 14\u00d714 to 2000\u00d72000 from the repository of the Florida University were used as the hessians.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00186-017-0607-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1053187", 
        "issn": [
          "1432-2994", 
          "1432-5217"
        ], 
        "name": "Mathematical Methods of Operations Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "86"
      }
    ], 
    "name": "On a conjugate directions method for solving strictly convex QP problem", 
    "pagination": "523-548", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6f296524d6e9c1340089968b0764cd8eb0bf40390a171f1e8ba0cbf0319200e6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00186-017-0607-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091770989"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00186-017-0607-z", 
      "https://app.dimensions.ai/details/publication/pub.1091770989"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00186-017-0607-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00186-017-0607-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00186-017-0607-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00186-017-0607-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00186-017-0607-z'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00186-017-0607-z schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N5a9d12f3cd904779b6d651cd958c3364
4 schema:citation sg:pub.10.1007/978-1-4757-2272-7
5 sg:pub.10.1007/978-1-5041-2940-4_9
6 sg:pub.10.1007/978-3-662-06865-6
7 sg:pub.10.1007/bf02830245
8 sg:pub.10.1007/bf03031308
9 sg:pub.10.1007/s10589-015-9765-1
10 sg:pub.10.1007/s11590-016-1060-2
11 sg:pub.10.1007/s13160-014-0154-4
12 https://app.dimensions.ai/details/publication/pub.1011083926
13 https://doi.org/10.1002/9780470400531.eorms0183
14 https://doi.org/10.1002/nla.499
15 https://doi.org/10.1016/0041-5553(69)90035-4
16 https://doi.org/10.1016/0045-7825(95)00832-2
17 https://doi.org/10.1016/s0045-7949(01)00025-6
18 https://doi.org/10.1016/s0377-0427(00)00408-8
19 https://doi.org/10.1017/s0962492916000076
20 https://doi.org/10.1051/m2an/196903r100351
21 https://doi.org/10.1093/comjnl/7.2.149
22 https://doi.org/10.1093/comjnl/7.2.155
23 https://doi.org/10.1109/twc.2010.110510.100555
24 https://doi.org/10.1137/030601880
25 https://doi.org/10.1137/08074008
26 https://doi.org/10.1137/080740167
27 https://doi.org/10.1137/s1052623497318992
28 https://doi.org/10.1145/1377603.1377606
29 https://doi.org/10.1145/1916461.1916464
30 https://doi.org/10.1145/2049662.2049663
31 https://doi.org/10.1145/62038.62043
32 https://doi.org/10.1587/nolta.3.103
33 https://doi.org/10.6028/jres.049.044
34 schema:datePublished 2017-12
35 schema:datePublishedReg 2017-12-01
36 schema:description Problem of solving the strictly convex, quadratic programming problem is studied. The idea of conjugate directions is used. First we assume that we know the set of directions conjugate with respect to the hessian of the goal function. We apply n simultaneous directional minimizations along these conjugate directions starting from the same point followed by the addition of the directional corrections. Theorem justifying that the algorithm finds the global minimum of the quadratic goal function is proved. The way of effective construction of the required set of conjugate directions is presented. We start with a vector with zero value entries except the first one. At each step new vector conjugate to the previously generated is constructed whose number of nonzero entries is larger by one than in its predecessor. Conjugate directions obtained by means of the above construction procedure with appropriately selected parameters form an upper triangular matrix which in exact computations is the Cholesky factor of the inverse of the hessian matrix. Computational cost of calculating the inverse factorization is comparable with the cost of the Cholesky factorization of the original second derivative matrix. Calculation of those vectors involves exclusively matrix/vector multiplication and finding an inverse of a diagonal matrix. Some preliminary computational results on some test problems are reported. In the test problems all symmetric, positive definite matrices with dimensions from 14×14 to 2000×2000 from the repository of the Florida University were used as the hessians.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N811d65d53d944a95b190a0578c3d426d
41 Naec462f002574a40ac36286715caa893
42 sg:journal.1053187
43 schema:name On a conjugate directions method for solving strictly convex QP problem
44 schema:pagination 523-548
45 schema:productId N37f506b73dbb422696d69daece9d2f0b
46 N9fbdb5ecaabe460b81596cde35f20458
47 Ne76113c50e224ef68e356cf621080389
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091770989
49 https://doi.org/10.1007/s00186-017-0607-z
50 schema:sdDatePublished 2019-04-10T14:23
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N4a570830cf234239b940bbd5f8f964e4
53 schema:url http://link.springer.com/10.1007%2Fs00186-017-0607-z
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N37f506b73dbb422696d69daece9d2f0b schema:name readcube_id
58 schema:value 6f296524d6e9c1340089968b0764cd8eb0bf40390a171f1e8ba0cbf0319200e6
59 rdf:type schema:PropertyValue
60 N4a570830cf234239b940bbd5f8f964e4 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N5a9d12f3cd904779b6d651cd958c3364 rdf:first sg:person.015130437311.06
63 rdf:rest rdf:nil
64 N811d65d53d944a95b190a0578c3d426d schema:volumeNumber 86
65 rdf:type schema:PublicationVolume
66 N9fbdb5ecaabe460b81596cde35f20458 schema:name dimensions_id
67 schema:value pub.1091770989
68 rdf:type schema:PropertyValue
69 Naec462f002574a40ac36286715caa893 schema:issueNumber 3
70 rdf:type schema:PublicationIssue
71 Ne76113c50e224ef68e356cf621080389 schema:name doi
72 schema:value 10.1007/s00186-017-0607-z
73 rdf:type schema:PropertyValue
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
78 schema:name Numerical and Computational Mathematics
79 rdf:type schema:DefinedTerm
80 sg:journal.1053187 schema:issn 1432-2994
81 1432-5217
82 schema:name Mathematical Methods of Operations Research
83 rdf:type schema:Periodical
84 sg:person.015130437311.06 schema:affiliation https://www.grid.ac/institutes/grid.1035.7
85 schema:familyName Stachurski
86 schema:givenName Andrzej
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015130437311.06
88 rdf:type schema:Person
89 sg:pub.10.1007/978-1-4757-2272-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011083926
90 https://doi.org/10.1007/978-1-4757-2272-7
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/978-1-5041-2940-4_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050156901
93 https://doi.org/10.1007/978-1-5041-2940-4_9
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/978-3-662-06865-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043368623
96 https://doi.org/10.1007/978-3-662-06865-6
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf02830245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051495823
99 https://doi.org/10.1007/bf02830245
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf03031308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052740457
102 https://doi.org/10.1007/bf03031308
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s10589-015-9765-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002234428
105 https://doi.org/10.1007/s10589-015-9765-1
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s11590-016-1060-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023155605
108 https://doi.org/10.1007/s11590-016-1060-2
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s13160-014-0154-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046690484
111 https://doi.org/10.1007/s13160-014-0154-4
112 rdf:type schema:CreativeWork
113 https://app.dimensions.ai/details/publication/pub.1011083926 schema:CreativeWork
114 https://doi.org/10.1002/9780470400531.eorms0183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044221281
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1002/nla.499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038792121
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0041-5553(69)90035-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036282328
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0045-7825(95)00832-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024110568
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/s0045-7949(01)00025-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004208639
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0377-0427(00)00408-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028313008
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1017/s0962492916000076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054905321
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1051/m2an/196903r100351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083713037
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1093/comjnl/7.2.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002056752
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1093/comjnl/7.2.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052963131
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/twc.2010.110510.100555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061827507
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1137/030601880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842786
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1137/08074008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062855310
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1137/080740167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062855315
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1137/s1052623497318992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883602
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1145/1377603.1377606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033337951
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1145/1916461.1916464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008389208
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1145/2049662.2049663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021694365
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1145/62038.62043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027688260
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1587/nolta.3.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043066997
153 rdf:type schema:CreativeWork
154 https://doi.org/10.6028/jres.049.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073597164
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.1035.7 schema:alternateName Warsaw University of Technology
157 schema:name Institute of Control and Computation Engineering, Warsaw University of Technology, Nowowiejska 15/19, 00-665, Warsaw, Poland
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...