Reduction of nonanticipativity constraints in multistage stochastic programming problems with endogenous and exogenous uncertainty View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-02

AUTHORS

F. Hooshmand, S. A. MirHassani

ABSTRACT

Multistage stochastic programming (SP) with both endogenous and exogenous uncertainties is a novel problem in which some uncertain parameters are decision-dependent and others are independent of decisions. The main difficulty of this problem is that nonanticipativity constraints (NACs) make up a significantly large constraint set, growing very fast with the number of scenarios and leading to an intractable model. Usually, a lot of these constraints are redundant and hence, identification and elimination of redundant NACs can cause a significant reduction in the problem size. Recently, a polynomial time algorithm has been proposed in the literature which is able to identify all redundant NACs in an SP problem with only endogenous uncertainty. In this paper, however, we extend the algorithm proposed in the literature and present a new method which is able to make the upper most possible reduction in the number of NACs in any SP with both exogenous and endogenous uncertain parameters. Proving the validity of this method is another innovation of this study. Computational results confirm that the proposed approach can significantly reduce the problem size within a reasonable computation time. More... »

PAGES

1-18

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00186-017-0600-6

DOI

http://dx.doi.org/10.1007/s00186-017-0600-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099738766


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Amirkabir University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.411368.9", 
          "name": [
            "Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hooshmand", 
        "givenName": "F.", 
        "id": "sg:person.01203611373.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203611373.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amirkabir University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.411368.9", 
          "name": [
            "Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "MirHassani", 
        "givenName": "S. A.", 
        "id": "sg:person.012402715557.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012402715557.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.compchemeng.2007.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002835930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compchemeng.2010.11.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011227853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-011-0855-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011652728", 
          "https://doi.org/10.1007/s10479-011-0855-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1014296730", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-0237-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014296730", 
          "https://doi.org/10.1007/978-1-4614-0237-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-0237-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014296730", 
          "https://doi.org/10.1007/978-1-4614-0237-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-006-0715-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015295719", 
          "https://doi.org/10.1007/s10107-006-0715-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-006-0715-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015295719", 
          "https://doi.org/10.1007/s10107-006-0715-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10556788.2015.1088850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015956591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2010.04.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022614244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compchemeng.2016.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023599470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207543.2015.1057625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023851157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10732-005-3122-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029633215", 
          "https://doi.org/10.1007/s10732-005-3122-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10732-005-3122-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029633215", 
          "https://doi.org/10.1007/s10732-005-3122-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018943626786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031551588", 
          "https://doi.org/10.1023/a:1018943626786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compchemeng.2006.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037933166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2009.07.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038561659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie8013549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055643666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie8013549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055643666"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02", 
    "datePublishedReg": "2018-02-01", 
    "description": "Multistage stochastic programming (SP) with both endogenous and exogenous uncertainties is a novel problem in which some uncertain parameters are decision-dependent and others are independent of decisions. The main difficulty of this problem is that nonanticipativity constraints (NACs) make up a significantly large constraint set, growing very fast with the number of scenarios and leading to an intractable model. Usually, a lot of these constraints are redundant and hence, identification and elimination of redundant NACs can cause a significant reduction in the problem size. Recently, a polynomial time algorithm has been proposed in the literature which is able to identify all redundant NACs in an SP problem with only endogenous uncertainty. In this paper, however, we extend the algorithm proposed in the literature and present a new method which is able to make the upper most possible reduction in the number of NACs in any SP with both exogenous and endogenous uncertain parameters. Proving the validity of this method is another innovation of this study. Computational results confirm that the proposed approach can significantly reduce the problem size within a reasonable computation time.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00186-017-0600-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053187", 
        "issn": [
          "1432-2994", 
          "1432-5217"
        ], 
        "name": "Mathematical Methods of Operations Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "87"
      }
    ], 
    "name": "Reduction of nonanticipativity constraints in multistage stochastic programming problems with endogenous and exogenous uncertainty", 
    "pagination": "1-18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7b6ad0b84fc8357a8313fd7d3c67467bdc056072f4eae758eeeaf4938ed8c725"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00186-017-0600-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099738766"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00186-017-0600-6", 
      "https://app.dimensions.ai/details/publication/pub.1099738766"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000603.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00186-017-0600-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00186-017-0600-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00186-017-0600-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00186-017-0600-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00186-017-0600-6'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00186-017-0600-6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N107e9bf5465f43b6bbf811fb7fce5128
4 schema:citation sg:pub.10.1007/978-1-4614-0237-4
5 sg:pub.10.1007/s10107-006-0715-7
6 sg:pub.10.1007/s10479-011-0855-x
7 sg:pub.10.1007/s10732-005-3122-y
8 sg:pub.10.1023/a:1018943626786
9 https://app.dimensions.ai/details/publication/pub.1014296730
10 https://doi.org/10.1016/j.compchemeng.2006.02.006
11 https://doi.org/10.1016/j.compchemeng.2007.11.010
12 https://doi.org/10.1016/j.compchemeng.2010.11.013
13 https://doi.org/10.1016/j.compchemeng.2016.11.011
14 https://doi.org/10.1016/j.ejor.2009.07.022
15 https://doi.org/10.1016/j.ejor.2010.04.032
16 https://doi.org/10.1021/ie8013549
17 https://doi.org/10.1080/00207543.2015.1057625
18 https://doi.org/10.1080/10556788.2015.1088850
19 schema:datePublished 2018-02
20 schema:datePublishedReg 2018-02-01
21 schema:description Multistage stochastic programming (SP) with both endogenous and exogenous uncertainties is a novel problem in which some uncertain parameters are decision-dependent and others are independent of decisions. The main difficulty of this problem is that nonanticipativity constraints (NACs) make up a significantly large constraint set, growing very fast with the number of scenarios and leading to an intractable model. Usually, a lot of these constraints are redundant and hence, identification and elimination of redundant NACs can cause a significant reduction in the problem size. Recently, a polynomial time algorithm has been proposed in the literature which is able to identify all redundant NACs in an SP problem with only endogenous uncertainty. In this paper, however, we extend the algorithm proposed in the literature and present a new method which is able to make the upper most possible reduction in the number of NACs in any SP with both exogenous and endogenous uncertain parameters. Proving the validity of this method is another innovation of this study. Computational results confirm that the proposed approach can significantly reduce the problem size within a reasonable computation time.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N52bbbfd4b78944998efd96b7b9313823
26 N978863d72fa640d49157e532028225d2
27 sg:journal.1053187
28 schema:name Reduction of nonanticipativity constraints in multistage stochastic programming problems with endogenous and exogenous uncertainty
29 schema:pagination 1-18
30 schema:productId N43039538006a4d76b4babb6e7dcab808
31 Nd68b496d4cbb489e9d29392b5222b00e
32 Nf672e9cf66f84e36837bb722a60630fc
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099738766
34 https://doi.org/10.1007/s00186-017-0600-6
35 schema:sdDatePublished 2019-04-10T15:14
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N066ec18d8b6145ee9e061fa1d331f5ba
38 schema:url http://link.springer.com/10.1007/s00186-017-0600-6
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N066ec18d8b6145ee9e061fa1d331f5ba schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N107e9bf5465f43b6bbf811fb7fce5128 rdf:first sg:person.01203611373.50
45 rdf:rest N95b7af170fea445493fb53cddc5fd5c8
46 N43039538006a4d76b4babb6e7dcab808 schema:name dimensions_id
47 schema:value pub.1099738766
48 rdf:type schema:PropertyValue
49 N52bbbfd4b78944998efd96b7b9313823 schema:volumeNumber 87
50 rdf:type schema:PublicationVolume
51 N95b7af170fea445493fb53cddc5fd5c8 rdf:first sg:person.012402715557.51
52 rdf:rest rdf:nil
53 N978863d72fa640d49157e532028225d2 schema:issueNumber 1
54 rdf:type schema:PublicationIssue
55 Nd68b496d4cbb489e9d29392b5222b00e schema:name doi
56 schema:value 10.1007/s00186-017-0600-6
57 rdf:type schema:PropertyValue
58 Nf672e9cf66f84e36837bb722a60630fc schema:name readcube_id
59 schema:value 7b6ad0b84fc8357a8313fd7d3c67467bdc056072f4eae758eeeaf4938ed8c725
60 rdf:type schema:PropertyValue
61 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
62 schema:name Information and Computing Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
65 schema:name Artificial Intelligence and Image Processing
66 rdf:type schema:DefinedTerm
67 sg:journal.1053187 schema:issn 1432-2994
68 1432-5217
69 schema:name Mathematical Methods of Operations Research
70 rdf:type schema:Periodical
71 sg:person.01203611373.50 schema:affiliation https://www.grid.ac/institutes/grid.411368.9
72 schema:familyName Hooshmand
73 schema:givenName F.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203611373.50
75 rdf:type schema:Person
76 sg:person.012402715557.51 schema:affiliation https://www.grid.ac/institutes/grid.411368.9
77 schema:familyName MirHassani
78 schema:givenName S. A.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012402715557.51
80 rdf:type schema:Person
81 sg:pub.10.1007/978-1-4614-0237-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014296730
82 https://doi.org/10.1007/978-1-4614-0237-4
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/s10107-006-0715-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015295719
85 https://doi.org/10.1007/s10107-006-0715-7
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s10479-011-0855-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011652728
88 https://doi.org/10.1007/s10479-011-0855-x
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s10732-005-3122-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029633215
91 https://doi.org/10.1007/s10732-005-3122-y
92 rdf:type schema:CreativeWork
93 sg:pub.10.1023/a:1018943626786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031551588
94 https://doi.org/10.1023/a:1018943626786
95 rdf:type schema:CreativeWork
96 https://app.dimensions.ai/details/publication/pub.1014296730 schema:CreativeWork
97 https://doi.org/10.1016/j.compchemeng.2006.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037933166
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.compchemeng.2007.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002835930
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.compchemeng.2010.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011227853
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.compchemeng.2016.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023599470
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.ejor.2009.07.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038561659
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.ejor.2010.04.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022614244
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1021/ie8013549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055643666
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1080/00207543.2015.1057625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023851157
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1080/10556788.2015.1088850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015956591
114 rdf:type schema:CreativeWork
115 https://www.grid.ac/institutes/grid.411368.9 schema:alternateName Amirkabir University of Technology
116 schema:name Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...