Stochastic modelling of tropical cyclone tracks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-12

AUTHORS

Jonas Rumpf, Helga Weindl, Peter Höppe, Ernst Rauch, Volker Schmidt

ABSTRACT

A stochastic model for the tracks of tropical cyclones that allows for the computerised generation of a large number of synthetic cyclone tracks is introduced. This will provide a larger dataset than previously available for the assessment of risks in areas affected by tropical cyclones. To improve homogeneity, the historical tracks are first split into six classes. The points of cyclone genesis are modelled as a spatial Poisson point process, the intensity of which is estimated using a generalised version of a kernel estimator. For these points, initial values of direction, translation speed, and wind speed are drawn from histograms of the historical values of these variables observed in the neighbourhood of the respective points, thereby generating a first 6-h segment of a track. The subsequent segments are then generated by drawing changes in theses variables from histograms of the historical data available near the cyclone’s current location. A termination probability for the track is determined after each segment as a function of wind speed and location. In the present paper, the model is applied to historical cyclone data from the western North Pacific, but it is general enough to be transferred to other ocean basins with only minor adjustments. A version for the North Atlantic is currently under preparation. More... »

PAGES

475-490

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00186-007-0168-7

DOI

http://dx.doi.org/10.1007/s00186-007-0168-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032152460


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Stochastics, Ulm University, 89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rumpf", 
        "givenName": "Jonas", 
        "id": "sg:person.012733437177.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733437177.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Munich Reinsurance Company, 80791, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weindl", 
        "givenName": "Helga", 
        "id": "sg:person.012203302214.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012203302214.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Munich Reinsurance Company, 80791, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f6ppe", 
        "givenName": "Peter", 
        "id": "sg:person.014064444016.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014064444016.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Munich Reinsurance Company, 80791, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rauch", 
        "givenName": "Ernst", 
        "id": "sg:person.015457405016.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015457405016.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Stochastics, Ulm University, 89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Volker", 
        "id": "sg:person.01051347101.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1600-0870.2007.00240.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026823398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-87-3-299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049063973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9445(2000)126:10(1222)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057599662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-950x(2005)131:4(181)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057607721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1980)108<1212:aamotw>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063452715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477-28.9.399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106312138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3324-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705894", 
          "https://doi.org/10.1007/978-1-4899-3324-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3324-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705894", 
          "https://doi.org/10.1007/978-1-4899-3324-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "A stochastic model for the tracks of tropical cyclones that allows for the computerised generation of a large number of synthetic cyclone tracks is introduced. This will provide a larger dataset than previously available for the assessment of risks in areas affected by tropical cyclones. To improve homogeneity, the historical tracks are first split into six classes. The points of cyclone genesis are modelled as a spatial Poisson point process, the intensity of which is estimated using a generalised version of a kernel estimator. For these points, initial values of direction, translation speed, and wind speed are drawn from histograms of the historical values of these variables observed in the neighbourhood of the respective points, thereby generating a first 6-h segment of a track. The subsequent segments are then generated by drawing changes in theses variables from histograms of the historical data available near the cyclone\u2019s current location. A termination probability for the track is determined after each segment as a function of wind speed and location. In the present paper, the model is applied to historical cyclone data from the western North Pacific, but it is general enough to be transferred to other ocean basins with only minor adjustments. A version for the North Atlantic is currently under preparation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00186-007-0168-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053187", 
        "issn": [
          "1432-2994", 
          "1432-5217"
        ], 
        "name": "Mathematical Methods of Operations Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "66"
      }
    ], 
    "name": "Stochastic modelling of tropical cyclone tracks", 
    "pagination": "475-490", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "992aec785402cdcd05354ce88a9a7266adf1fd4679a2bc26f5b294f6aace64c9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00186-007-0168-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032152460"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00186-007-0168-7", 
      "https://app.dimensions.ai/details/publication/pub.1032152460"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13084_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00186-007-0168-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00186-007-0168-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00186-007-0168-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00186-007-0168-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00186-007-0168-7'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00186-007-0168-7 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N39380fea40a44a46921fe194733e91cd
4 schema:citation sg:pub.10.1007/978-1-4899-3324-9
5 https://doi.org/10.1061/(asce)0733-9445(2000)126:10(1222)
6 https://doi.org/10.1061/(asce)0733-950x(2005)131:4(181)
7 https://doi.org/10.1111/j.1600-0870.2007.00240.x
8 https://doi.org/10.1175/1520-0477-28.9.399
9 https://doi.org/10.1175/1520-0493(1980)108<1212:aamotw>2.0.co;2
10 https://doi.org/10.1175/bams-87-3-299
11 schema:datePublished 2007-12
12 schema:datePublishedReg 2007-12-01
13 schema:description A stochastic model for the tracks of tropical cyclones that allows for the computerised generation of a large number of synthetic cyclone tracks is introduced. This will provide a larger dataset than previously available for the assessment of risks in areas affected by tropical cyclones. To improve homogeneity, the historical tracks are first split into six classes. The points of cyclone genesis are modelled as a spatial Poisson point process, the intensity of which is estimated using a generalised version of a kernel estimator. For these points, initial values of direction, translation speed, and wind speed are drawn from histograms of the historical values of these variables observed in the neighbourhood of the respective points, thereby generating a first 6-h segment of a track. The subsequent segments are then generated by drawing changes in theses variables from histograms of the historical data available near the cyclone’s current location. A termination probability for the track is determined after each segment as a function of wind speed and location. In the present paper, the model is applied to historical cyclone data from the western North Pacific, but it is general enough to be transferred to other ocean basins with only minor adjustments. A version for the North Atlantic is currently under preparation.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N3577a2f3b4fe4e2cbc87473e9dfc4e26
18 Nf92d83a16fbf48309e282cf4c2cf517f
19 sg:journal.1053187
20 schema:name Stochastic modelling of tropical cyclone tracks
21 schema:pagination 475-490
22 schema:productId N2be3c58e29a74f87b679131b58fe61f7
23 Nc36d5bd8ab394259a3cb251527d0b1dd
24 Ndae42ee1b95049ac8fdc3b934b41d545
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032152460
26 https://doi.org/10.1007/s00186-007-0168-7
27 schema:sdDatePublished 2019-04-11T14:29
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N5c569b34246a48dda62df91a4b104058
30 schema:url http://link.springer.com/10.1007/s00186-007-0168-7
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N18332062a0244783929ffb4a95879fca rdf:first sg:person.014064444016.04
35 rdf:rest Ndabd8ba34b0d4a588c91b28db57ea0a9
36 N2be3c58e29a74f87b679131b58fe61f7 schema:name dimensions_id
37 schema:value pub.1032152460
38 rdf:type schema:PropertyValue
39 N3577a2f3b4fe4e2cbc87473e9dfc4e26 schema:volumeNumber 66
40 rdf:type schema:PublicationVolume
41 N39380fea40a44a46921fe194733e91cd rdf:first sg:person.012733437177.51
42 rdf:rest N3f9b72964d9b406f9499cb8a57d17bdd
43 N3f9b72964d9b406f9499cb8a57d17bdd rdf:first sg:person.012203302214.21
44 rdf:rest N18332062a0244783929ffb4a95879fca
45 N5c569b34246a48dda62df91a4b104058 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N64c5732576814d9fbe2946bc8fdec8bf schema:name Munich Reinsurance Company, 80791, Munich, Germany
48 rdf:type schema:Organization
49 N75b8dcbaccb44bdc807b1ecb76fd20c8 schema:name Munich Reinsurance Company, 80791, Munich, Germany
50 rdf:type schema:Organization
51 N9300e8214c1f41339f4c5afbe2bf5166 schema:name Munich Reinsurance Company, 80791, Munich, Germany
52 rdf:type schema:Organization
53 Nbe5a1bba48f04435ade3bf09327a8c3c rdf:first sg:person.01051347101.48
54 rdf:rest rdf:nil
55 Nc36d5bd8ab394259a3cb251527d0b1dd schema:name readcube_id
56 schema:value 992aec785402cdcd05354ce88a9a7266adf1fd4679a2bc26f5b294f6aace64c9
57 rdf:type schema:PropertyValue
58 Ndabd8ba34b0d4a588c91b28db57ea0a9 rdf:first sg:person.015457405016.60
59 rdf:rest Nbe5a1bba48f04435ade3bf09327a8c3c
60 Ndae42ee1b95049ac8fdc3b934b41d545 schema:name doi
61 schema:value 10.1007/s00186-007-0168-7
62 rdf:type schema:PropertyValue
63 Nf92d83a16fbf48309e282cf4c2cf517f schema:issueNumber 3
64 rdf:type schema:PublicationIssue
65 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
66 schema:name Earth Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
69 schema:name Atmospheric Sciences
70 rdf:type schema:DefinedTerm
71 sg:journal.1053187 schema:issn 1432-2994
72 1432-5217
73 schema:name Mathematical Methods of Operations Research
74 rdf:type schema:Periodical
75 sg:person.01051347101.48 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
76 schema:familyName Schmidt
77 schema:givenName Volker
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48
79 rdf:type schema:Person
80 sg:person.012203302214.21 schema:affiliation N9300e8214c1f41339f4c5afbe2bf5166
81 schema:familyName Weindl
82 schema:givenName Helga
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012203302214.21
84 rdf:type schema:Person
85 sg:person.012733437177.51 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
86 schema:familyName Rumpf
87 schema:givenName Jonas
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733437177.51
89 rdf:type schema:Person
90 sg:person.014064444016.04 schema:affiliation N75b8dcbaccb44bdc807b1ecb76fd20c8
91 schema:familyName Höppe
92 schema:givenName Peter
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014064444016.04
94 rdf:type schema:Person
95 sg:person.015457405016.60 schema:affiliation N64c5732576814d9fbe2946bc8fdec8bf
96 schema:familyName Rauch
97 schema:givenName Ernst
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015457405016.60
99 rdf:type schema:Person
100 sg:pub.10.1007/978-1-4899-3324-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705894
101 https://doi.org/10.1007/978-1-4899-3324-9
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1061/(asce)0733-9445(2000)126:10(1222) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057599662
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1061/(asce)0733-950x(2005)131:4(181) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057607721
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1111/j.1600-0870.2007.00240.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026823398
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1175/1520-0477-28.9.399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106312138
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1175/1520-0493(1980)108<1212:aamotw>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063452715
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1175/bams-87-3-299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049063973
114 rdf:type schema:CreativeWork
115 https://www.grid.ac/institutes/grid.6582.9 schema:alternateName University of Ulm
116 schema:name Institute of Stochastics, Ulm University, 89069, Ulm, Germany
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...