Stochastic modelling of tropical cyclone tracks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-12

AUTHORS

Jonas Rumpf, Helga Weindl, Peter Höppe, Ernst Rauch, Volker Schmidt

ABSTRACT

A stochastic model for the tracks of tropical cyclones that allows for the computerised generation of a large number of synthetic cyclone tracks is introduced. This will provide a larger dataset than previously available for the assessment of risks in areas affected by tropical cyclones. To improve homogeneity, the historical tracks are first split into six classes. The points of cyclone genesis are modelled as a spatial Poisson point process, the intensity of which is estimated using a generalised version of a kernel estimator. For these points, initial values of direction, translation speed, and wind speed are drawn from histograms of the historical values of these variables observed in the neighbourhood of the respective points, thereby generating a first 6-h segment of a track. The subsequent segments are then generated by drawing changes in theses variables from histograms of the historical data available near the cyclone’s current location. A termination probability for the track is determined after each segment as a function of wind speed and location. In the present paper, the model is applied to historical cyclone data from the western North Pacific, but it is general enough to be transferred to other ocean basins with only minor adjustments. A version for the North Atlantic is currently under preparation. More... »

PAGES

475-490

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00186-007-0168-7

DOI

http://dx.doi.org/10.1007/s00186-007-0168-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032152460


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Stochastics, Ulm University, 89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rumpf", 
        "givenName": "Jonas", 
        "id": "sg:person.012733437177.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733437177.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Munich Reinsurance Company, 80791, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weindl", 
        "givenName": "Helga", 
        "id": "sg:person.012203302214.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012203302214.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Munich Reinsurance Company, 80791, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f6ppe", 
        "givenName": "Peter", 
        "id": "sg:person.014064444016.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014064444016.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Munich Reinsurance Company, 80791, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rauch", 
        "givenName": "Ernst", 
        "id": "sg:person.015457405016.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015457405016.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Stochastics, Ulm University, 89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Volker", 
        "id": "sg:person.01051347101.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1600-0870.2007.00240.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026823398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-87-3-299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049063973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9445(2000)126:10(1222)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057599662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-950x(2005)131:4(181)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057607721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1980)108<1212:aamotw>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063452715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477-28.9.399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106312138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3324-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705894", 
          "https://doi.org/10.1007/978-1-4899-3324-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3324-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705894", 
          "https://doi.org/10.1007/978-1-4899-3324-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "A stochastic model for the tracks of tropical cyclones that allows for the computerised generation of a large number of synthetic cyclone tracks is introduced. This will provide a larger dataset than previously available for the assessment of risks in areas affected by tropical cyclones. To improve homogeneity, the historical tracks are first split into six classes. The points of cyclone genesis are modelled as a spatial Poisson point process, the intensity of which is estimated using a generalised version of a kernel estimator. For these points, initial values of direction, translation speed, and wind speed are drawn from histograms of the historical values of these variables observed in the neighbourhood of the respective points, thereby generating a first 6-h segment of a track. The subsequent segments are then generated by drawing changes in theses variables from histograms of the historical data available near the cyclone\u2019s current location. A termination probability for the track is determined after each segment as a function of wind speed and location. In the present paper, the model is applied to historical cyclone data from the western North Pacific, but it is general enough to be transferred to other ocean basins with only minor adjustments. A version for the North Atlantic is currently under preparation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00186-007-0168-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053187", 
        "issn": [
          "1432-2994", 
          "1432-5217"
        ], 
        "name": "Mathematical Methods of Operations Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "66"
      }
    ], 
    "name": "Stochastic modelling of tropical cyclone tracks", 
    "pagination": "475-490", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "992aec785402cdcd05354ce88a9a7266adf1fd4679a2bc26f5b294f6aace64c9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00186-007-0168-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032152460"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00186-007-0168-7", 
      "https://app.dimensions.ai/details/publication/pub.1032152460"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13084_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00186-007-0168-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00186-007-0168-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00186-007-0168-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00186-007-0168-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00186-007-0168-7'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00186-007-0168-7 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N32ac901701c44a2f82db43983d9fd305
4 schema:citation sg:pub.10.1007/978-1-4899-3324-9
5 https://doi.org/10.1061/(asce)0733-9445(2000)126:10(1222)
6 https://doi.org/10.1061/(asce)0733-950x(2005)131:4(181)
7 https://doi.org/10.1111/j.1600-0870.2007.00240.x
8 https://doi.org/10.1175/1520-0477-28.9.399
9 https://doi.org/10.1175/1520-0493(1980)108<1212:aamotw>2.0.co;2
10 https://doi.org/10.1175/bams-87-3-299
11 schema:datePublished 2007-12
12 schema:datePublishedReg 2007-12-01
13 schema:description A stochastic model for the tracks of tropical cyclones that allows for the computerised generation of a large number of synthetic cyclone tracks is introduced. This will provide a larger dataset than previously available for the assessment of risks in areas affected by tropical cyclones. To improve homogeneity, the historical tracks are first split into six classes. The points of cyclone genesis are modelled as a spatial Poisson point process, the intensity of which is estimated using a generalised version of a kernel estimator. For these points, initial values of direction, translation speed, and wind speed are drawn from histograms of the historical values of these variables observed in the neighbourhood of the respective points, thereby generating a first 6-h segment of a track. The subsequent segments are then generated by drawing changes in theses variables from histograms of the historical data available near the cyclone’s current location. A termination probability for the track is determined after each segment as a function of wind speed and location. In the present paper, the model is applied to historical cyclone data from the western North Pacific, but it is general enough to be transferred to other ocean basins with only minor adjustments. A version for the North Atlantic is currently under preparation.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N5ebd8e2bafb244c9b85234f7c6a32d6b
18 Necf5c769e39d4002b3f5ccbbcfd0cc72
19 sg:journal.1053187
20 schema:name Stochastic modelling of tropical cyclone tracks
21 schema:pagination 475-490
22 schema:productId N0cd87af517f84ea1b0f26ed8e1190484
23 N50638b2548004ab1b4366f0edeb84aac
24 Ne369156abdf2427b8c40e5fad8705a93
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032152460
26 https://doi.org/10.1007/s00186-007-0168-7
27 schema:sdDatePublished 2019-04-11T14:29
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N151d3c8d3e9c446a8d2491e70bf6f549
30 schema:url http://link.springer.com/10.1007/s00186-007-0168-7
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N0a2523b74f354f3989877acfe1242d4b schema:name Munich Reinsurance Company, 80791, Munich, Germany
35 rdf:type schema:Organization
36 N0b2262dcc99e485eb2ed219ed5527f17 schema:name Munich Reinsurance Company, 80791, Munich, Germany
37 rdf:type schema:Organization
38 N0cd87af517f84ea1b0f26ed8e1190484 schema:name dimensions_id
39 schema:value pub.1032152460
40 rdf:type schema:PropertyValue
41 N151d3c8d3e9c446a8d2491e70bf6f549 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N32ac901701c44a2f82db43983d9fd305 rdf:first sg:person.012733437177.51
44 rdf:rest Nc406e648432649a39b2d5e386e6b3a66
45 N50638b2548004ab1b4366f0edeb84aac schema:name readcube_id
46 schema:value 992aec785402cdcd05354ce88a9a7266adf1fd4679a2bc26f5b294f6aace64c9
47 rdf:type schema:PropertyValue
48 N59f9a0c0813342e380951310b031f7a3 schema:name Munich Reinsurance Company, 80791, Munich, Germany
49 rdf:type schema:Organization
50 N5ebd8e2bafb244c9b85234f7c6a32d6b schema:issueNumber 3
51 rdf:type schema:PublicationIssue
52 N6f92b423873b43f79fb85b9e0e9d8275 rdf:first sg:person.014064444016.04
53 rdf:rest Nd94c9dba5c164267b0849a988a4401f6
54 Nc406e648432649a39b2d5e386e6b3a66 rdf:first sg:person.012203302214.21
55 rdf:rest N6f92b423873b43f79fb85b9e0e9d8275
56 Ncb2f746b764445ee85e2d2cab7f3c8b1 rdf:first sg:person.01051347101.48
57 rdf:rest rdf:nil
58 Nd94c9dba5c164267b0849a988a4401f6 rdf:first sg:person.015457405016.60
59 rdf:rest Ncb2f746b764445ee85e2d2cab7f3c8b1
60 Ne369156abdf2427b8c40e5fad8705a93 schema:name doi
61 schema:value 10.1007/s00186-007-0168-7
62 rdf:type schema:PropertyValue
63 Necf5c769e39d4002b3f5ccbbcfd0cc72 schema:volumeNumber 66
64 rdf:type schema:PublicationVolume
65 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
66 schema:name Earth Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
69 schema:name Atmospheric Sciences
70 rdf:type schema:DefinedTerm
71 sg:journal.1053187 schema:issn 1432-2994
72 1432-5217
73 schema:name Mathematical Methods of Operations Research
74 rdf:type schema:Periodical
75 sg:person.01051347101.48 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
76 schema:familyName Schmidt
77 schema:givenName Volker
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48
79 rdf:type schema:Person
80 sg:person.012203302214.21 schema:affiliation N0a2523b74f354f3989877acfe1242d4b
81 schema:familyName Weindl
82 schema:givenName Helga
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012203302214.21
84 rdf:type schema:Person
85 sg:person.012733437177.51 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
86 schema:familyName Rumpf
87 schema:givenName Jonas
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733437177.51
89 rdf:type schema:Person
90 sg:person.014064444016.04 schema:affiliation N0b2262dcc99e485eb2ed219ed5527f17
91 schema:familyName Höppe
92 schema:givenName Peter
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014064444016.04
94 rdf:type schema:Person
95 sg:person.015457405016.60 schema:affiliation N59f9a0c0813342e380951310b031f7a3
96 schema:familyName Rauch
97 schema:givenName Ernst
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015457405016.60
99 rdf:type schema:Person
100 sg:pub.10.1007/978-1-4899-3324-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705894
101 https://doi.org/10.1007/978-1-4899-3324-9
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1061/(asce)0733-9445(2000)126:10(1222) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057599662
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1061/(asce)0733-950x(2005)131:4(181) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057607721
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1111/j.1600-0870.2007.00240.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026823398
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1175/1520-0477-28.9.399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106312138
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1175/1520-0493(1980)108<1212:aamotw>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063452715
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1175/bams-87-3-299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049063973
114 rdf:type schema:CreativeWork
115 https://www.grid.ac/institutes/grid.6582.9 schema:alternateName University of Ulm
116 schema:name Institute of Stochastics, Ulm University, 89069, Ulm, Germany
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...