Choice of optimal initial designs in sequential experiments View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-04

AUTHORS

Peng-Fei Li, Min-Qian Liu, Run-Chu Zhang

ABSTRACT

Combined-optimal designs (Li and Lin, 2003) are obviously the best choices for the initial designs if we partition the experiment into two parts with equal size to obtain some information about the process, especially for the case not considering the blocking factor. In this paper, the definition of combined-optimal design is extended to the case when blocking factor is significant, and this new class of designs is called blocked combined-optimal designs. Some general results are obtained which relate 2k−pIII initial designs with their complementary designs when , where n=2k−p. By applying these results, we are able to characterize 2k−pIII combined-optimal designs or blocked combined-optimal designs in terms of their complementary designs. It is also proved that both 2k−pIII combined-optimal and blocked combined-optimal designs are not minimum aberration designs when and n−1−k > 2. And some combined-optimal and blocked combined-optimal designs with 16 and 32 runs are constructed for illustration. More... »

PAGES

127-135

References to SciGraph publications

Journal

TITLE

Metrika

ISSUE

2

VOLUME

61

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s001840400327

DOI

http://dx.doi.org/10.1007/s001840400327

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007407216


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nankai University", 
          "id": "https://www.grid.ac/institutes/grid.216938.7", 
          "name": [
            "Department of Statistics, School of Mathematical Sciences and LPMC, Nankai University, 300071, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Peng-Fei", 
        "id": "sg:person.015610677411.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015610677411.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nankai University", 
          "id": "https://www.grid.ac/institutes/grid.216938.7", 
          "name": [
            "Department of Statistics, School of Mathematical Sciences and LPMC, Nankai University, 300071, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Min-Qian", 
        "id": "sg:person.011276147611.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011276147611.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nankai University", 
          "id": "https://www.grid.ac/institutes/grid.216938.7", 
          "name": [
            "Department of Statistics, School of Mathematical Sciences and LPMC, Nankai University, 300071, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Run-Chu", 
        "id": "sg:person.010470456601.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010470456601.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0378-3758(00)00133-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012562836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001840100112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030756641", 
          "https://doi.org/10.1007/s001840100112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040693128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/90.1.233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059421265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/tropej/47.2.126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060059903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/004017002188618455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/004017002188618464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/004017003000000177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/004017003188618779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1017938925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064405943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1024691471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1032181168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176348135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176348907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1403599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069473884"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-04", 
    "datePublishedReg": "2005-04-01", 
    "description": "Combined-optimal designs (Li and Lin, 2003) are obviously the best choices for the initial designs if we partition the experiment into two parts with equal size to obtain some information about the process, especially for the case not considering the blocking factor. In this paper, the definition of combined-optimal design is extended to the case when blocking factor is significant, and this new class of designs is called blocked combined-optimal designs. Some general results are obtained which relate 2k\u2212pIII initial designs with their complementary designs when , where n=2k\u2212p. By applying these results, we are able to characterize 2k\u2212pIII combined-optimal designs or blocked combined-optimal designs in terms of their complementary designs. It is also proved that both 2k\u2212pIII combined-optimal and blocked combined-optimal designs are not minimum aberration designs when and n\u22121\u2212k > 2. And some combined-optimal and blocked combined-optimal designs with 16 and 32 runs are constructed for illustration.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s001840400327", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041634", 
        "issn": [
          "0026-1335", 
          "1435-926X"
        ], 
        "name": "Metrika", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "61"
      }
    ], 
    "name": "Choice of optimal initial designs in sequential experiments", 
    "pagination": "127-135", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "234876768a4bce2403c67b6251c7d37092b860020abe3a00009d7e900cf15b05"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s001840400327"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007407216"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s001840400327", 
      "https://app.dimensions.ai/details/publication/pub.1007407216"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000486.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s001840400327"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s001840400327'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s001840400327'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s001840400327'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s001840400327'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s001840400327 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author Nccd3910a453f4328b97c50363f975995
4 schema:citation sg:pub.10.1007/s001840100112
5 https://doi.org/10.1016/s0378-3758(00)00133-6
6 https://doi.org/10.1093/biomet/90.1.233
7 https://doi.org/10.1093/tropej/47.2.126
8 https://doi.org/10.1111/1467-9868.00164
9 https://doi.org/10.1198/004017002188618455
10 https://doi.org/10.1198/004017002188618464
11 https://doi.org/10.1198/004017003000000177
12 https://doi.org/10.1198/004017003188618779
13 https://doi.org/10.1214/aos/1017938925
14 https://doi.org/10.1214/aos/1024691471
15 https://doi.org/10.1214/aos/1032181168
16 https://doi.org/10.1214/aos/1176348135
17 https://doi.org/10.1214/aos/1176348907
18 https://doi.org/10.2307/1403599
19 schema:datePublished 2005-04
20 schema:datePublishedReg 2005-04-01
21 schema:description Combined-optimal designs (Li and Lin, 2003) are obviously the best choices for the initial designs if we partition the experiment into two parts with equal size to obtain some information about the process, especially for the case not considering the blocking factor. In this paper, the definition of combined-optimal design is extended to the case when blocking factor is significant, and this new class of designs is called blocked combined-optimal designs. Some general results are obtained which relate 2k−pIII initial designs with their complementary designs when , where n=2k−p. By applying these results, we are able to characterize 2k−pIII combined-optimal designs or blocked combined-optimal designs in terms of their complementary designs. It is also proved that both 2k−pIII combined-optimal and blocked combined-optimal designs are not minimum aberration designs when and n−1−k > 2. And some combined-optimal and blocked combined-optimal designs with 16 and 32 runs are constructed for illustration.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N6683712bceb54ff0afb03efdecc98535
26 N949ad717a19241379c46f078f4c8cbe5
27 sg:journal.1041634
28 schema:name Choice of optimal initial designs in sequential experiments
29 schema:pagination 127-135
30 schema:productId N2e72f9f91ecb40928074046a4daad3a8
31 N9e5aa9310d954ebe8d36b63e82214e95
32 Nc5a8c9e8de75426bbc4ea0b1bd5c0321
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007407216
34 https://doi.org/10.1007/s001840400327
35 schema:sdDatePublished 2019-04-10T15:45
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N43c21ee3265c4eddbf43a334c7a14d86
38 schema:url http://link.springer.com/10.1007/s001840400327
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N2e72f9f91ecb40928074046a4daad3a8 schema:name dimensions_id
43 schema:value pub.1007407216
44 rdf:type schema:PropertyValue
45 N43aa631c13c64f24806eeae47f291892 rdf:first sg:person.011276147611.03
46 rdf:rest N8f61d1ad53ba47c990052365fd172921
47 N43c21ee3265c4eddbf43a334c7a14d86 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N6683712bceb54ff0afb03efdecc98535 schema:volumeNumber 61
50 rdf:type schema:PublicationVolume
51 N8f61d1ad53ba47c990052365fd172921 rdf:first sg:person.010470456601.06
52 rdf:rest rdf:nil
53 N949ad717a19241379c46f078f4c8cbe5 schema:issueNumber 2
54 rdf:type schema:PublicationIssue
55 N9e5aa9310d954ebe8d36b63e82214e95 schema:name readcube_id
56 schema:value 234876768a4bce2403c67b6251c7d37092b860020abe3a00009d7e900cf15b05
57 rdf:type schema:PropertyValue
58 Nc5a8c9e8de75426bbc4ea0b1bd5c0321 schema:name doi
59 schema:value 10.1007/s001840400327
60 rdf:type schema:PropertyValue
61 Nccd3910a453f4328b97c50363f975995 rdf:first sg:person.015610677411.21
62 rdf:rest N43aa631c13c64f24806eeae47f291892
63 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
64 schema:name Medical and Health Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
67 schema:name Public Health and Health Services
68 rdf:type schema:DefinedTerm
69 sg:journal.1041634 schema:issn 0026-1335
70 1435-926X
71 schema:name Metrika
72 rdf:type schema:Periodical
73 sg:person.010470456601.06 schema:affiliation https://www.grid.ac/institutes/grid.216938.7
74 schema:familyName Zhang
75 schema:givenName Run-Chu
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010470456601.06
77 rdf:type schema:Person
78 sg:person.011276147611.03 schema:affiliation https://www.grid.ac/institutes/grid.216938.7
79 schema:familyName Liu
80 schema:givenName Min-Qian
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011276147611.03
82 rdf:type schema:Person
83 sg:person.015610677411.21 schema:affiliation https://www.grid.ac/institutes/grid.216938.7
84 schema:familyName Li
85 schema:givenName Peng-Fei
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015610677411.21
87 rdf:type schema:Person
88 sg:pub.10.1007/s001840100112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030756641
89 https://doi.org/10.1007/s001840100112
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/s0378-3758(00)00133-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012562836
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1093/biomet/90.1.233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059421265
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1093/tropej/47.2.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060059903
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1111/1467-9868.00164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040693128
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1198/004017002188618455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197436
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1198/004017002188618464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197437
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1198/004017003000000177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197526
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1198/004017003188618779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197530
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1214/aos/1017938925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064405943
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1214/aos/1024691471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406097
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1214/aos/1032181168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406226
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1214/aos/1176348135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408540
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1214/aos/1176348907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408741
116 rdf:type schema:CreativeWork
117 https://doi.org/10.2307/1403599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069473884
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.216938.7 schema:alternateName Nankai University
120 schema:name Department of Statistics, School of Mathematical Sciences and LPMC, Nankai University, 300071, Tianjin, China
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...