Effective observation of random processes using derivatives View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-08

AUTHORS

Wolfgang Näther, Jaroslav Šimák

ABSTRACT

What are optimal observation times of a random process to obtain good prediction or good estimation of the (parametric) trend? In the presented paper we discuss especially the following question: What is better, observation of a differentiable process itself or observation of derivatives of certain degree. We start with simple examples and then we give little bit of theory where observation of derivatives should be preferred. Further, we find some analytical results if the covariance function comes from the Matérn-class or from the J-Bessel-class. More... »

PAGES

71-84

Journal

TITLE

Metrika

ISSUE

1

VOLUME

58

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s001840200224

DOI

http://dx.doi.org/10.1007/s001840200224

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014774098


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Freiberg University Of Mining And Technology", 
          "id": "https://www.grid.ac/institutes/grid.6862.a", 
          "name": [
            "TU Bergakademie Freiberg, Fakult\u00e4t f\u00fcr Mathematik und Informatik, 09596 Freiberg, Germany (e-mail: naether@math.tu-freiberg.de), DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "N\u00e4ther", 
        "givenName": "Wolfgang", 
        "id": "sg:person.014367310401.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014367310401.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Freiberg University Of Mining And Technology", 
          "id": "https://www.grid.ac/institutes/grid.6862.a", 
          "name": [
            "TU Bergakademie Freiberg, Fakult\u00e4t f\u00fcr Mathematik und Informatik, 09596 Freiberg, Germany (e-mail: naether@math.tu-freiberg.de), DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u0160im\u00e1k", 
        "givenName": "Jaroslav", 
        "type": "Person"
      }
    ], 
    "datePublished": "2003-08", 
    "datePublishedReg": "2003-08-01", 
    "description": "What are optimal observation times of a random process to obtain good prediction or good estimation of the (parametric) trend? In the presented paper we discuss especially the following question: What is better, observation of a differentiable process itself or observation of derivatives of certain degree. We start with simple examples and then we give little bit of theory where observation of derivatives should be preferred. Further, we find some analytical results if the covariance function comes from the Mat\u00e9rn-class or from the J-Bessel-class.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s001840200224", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041634", 
        "issn": [
          "0026-1335", 
          "1435-926X"
        ], 
        "name": "Metrika", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "Effective observation of random processes using derivatives", 
    "pagination": "71-84", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "46633410489abe25b7dd0a5a0e48efcec49cfb7c77e553ad93c1622d6d58e0ed"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s001840200224"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014774098"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s001840200224", 
      "https://app.dimensions.ai/details/publication/pub.1014774098"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000487.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s001840200224"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s001840200224'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s001840200224'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s001840200224'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s001840200224'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s001840200224 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N012c2a9b057d42398e077a4d2dce2c51
4 schema:datePublished 2003-08
5 schema:datePublishedReg 2003-08-01
6 schema:description What are optimal observation times of a random process to obtain good prediction or good estimation of the (parametric) trend? In the presented paper we discuss especially the following question: What is better, observation of a differentiable process itself or observation of derivatives of certain degree. We start with simple examples and then we give little bit of theory where observation of derivatives should be preferred. Further, we find some analytical results if the covariance function comes from the Matérn-class or from the J-Bessel-class.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N7406650377ba440986ffef341b1e5d45
11 Nfca98aca3f7b4ff7ad6b728fee845640
12 sg:journal.1041634
13 schema:name Effective observation of random processes using derivatives
14 schema:pagination 71-84
15 schema:productId N2beb722583d74b9a8f6e532032d8cfd4
16 N5ab45d70220f42caa4b60fc87affb0d5
17 Nf05218d670d34dee91d7e22b4812dbeb
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014774098
19 https://doi.org/10.1007/s001840200224
20 schema:sdDatePublished 2019-04-11T01:01
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nc42687fe1fee435a9a5a8e47deb48544
23 schema:url http://link.springer.com/10.1007/s001840200224
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N012c2a9b057d42398e077a4d2dce2c51 rdf:first sg:person.014367310401.44
28 rdf:rest N908839af81fb40589830fc7eee46f980
29 N2beb722583d74b9a8f6e532032d8cfd4 schema:name dimensions_id
30 schema:value pub.1014774098
31 rdf:type schema:PropertyValue
32 N5ab45d70220f42caa4b60fc87affb0d5 schema:name readcube_id
33 schema:value 46633410489abe25b7dd0a5a0e48efcec49cfb7c77e553ad93c1622d6d58e0ed
34 rdf:type schema:PropertyValue
35 N7406650377ba440986ffef341b1e5d45 schema:volumeNumber 58
36 rdf:type schema:PublicationVolume
37 N908839af81fb40589830fc7eee46f980 rdf:first Na9cc3c42d2f14ad1beda78a886f801e3
38 rdf:rest rdf:nil
39 Na9cc3c42d2f14ad1beda78a886f801e3 schema:affiliation https://www.grid.ac/institutes/grid.6862.a
40 schema:familyName Šimák
41 schema:givenName Jaroslav
42 rdf:type schema:Person
43 Nc42687fe1fee435a9a5a8e47deb48544 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 Nf05218d670d34dee91d7e22b4812dbeb schema:name doi
46 schema:value 10.1007/s001840200224
47 rdf:type schema:PropertyValue
48 Nfca98aca3f7b4ff7ad6b728fee845640 schema:issueNumber 1
49 rdf:type schema:PublicationIssue
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
54 schema:name Statistics
55 rdf:type schema:DefinedTerm
56 sg:journal.1041634 schema:issn 0026-1335
57 1435-926X
58 schema:name Metrika
59 rdf:type schema:Periodical
60 sg:person.014367310401.44 schema:affiliation https://www.grid.ac/institutes/grid.6862.a
61 schema:familyName Näther
62 schema:givenName Wolfgang
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014367310401.44
64 rdf:type schema:Person
65 https://www.grid.ac/institutes/grid.6862.a schema:alternateName Freiberg University Of Mining And Technology
66 schema:name TU Bergakademie Freiberg, Fakultät für Mathematik und Informatik, 09596 Freiberg, Germany (e-mail: naether@math.tu-freiberg.de), DE
67 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...