On random fuzzy variables of second order and their application to linear statistical inference with fuzzy data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-09

AUTHORS

Wolfgang Näther

ABSTRACT

This paper summarizes some results on random fuzzy variables with existing expectation and variance, called random fuzzy variables of second order. Using the Frechét-principle and – via support functions – the embedding of convex fuzzy sets into a Banach space of functions it especially presents a unified view on expectation and variance of random fuzzy variables. These notions are applied in developing linear statistical inference with fuzzy data. Detailed investigations are presented concerning best linear unbiased estimation in linear regression models with fuzzy observations. More... »

PAGES

201-221

References to SciGraph publications

Journal

TITLE

Metrika

ISSUE

3

VOLUME

51

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s001840000047

DOI

http://dx.doi.org/10.1007/s001840000047

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048276710


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Freiberg University Of Mining And Technology", 
          "id": "https://www.grid.ac/institutes/grid.6862.a", 
          "name": [
            "TU Bergakademie Freiberg, Fakult\u00e4t f\u00fcr Mathematik und Informatik, 09596 Freiberg, Germany (e-mail: naether@math.tu-freiberg.de), DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "N\u00e4ther", 
        "givenName": "Wolfgang", 
        "id": "sg:person.014367310401.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014367310401.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0020-0255(78)90019-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000052059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0255(78)90019-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000052059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1006047231", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-3943-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006047231", 
          "https://doi.org/10.1007/978-94-009-3943-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-3943-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006047231", 
          "https://doi.org/10.1007/978-94-009-3943-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-0255(98)00010-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010354457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(81)90032-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014806977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(81)90032-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014806977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004400050229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016459236", 
          "https://doi.org/10.1007/s004400050229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-3758(99)00107-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017266628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1031675421", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-2506-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031675421", 
          "https://doi.org/10.1007/978-94-011-2506-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-2506-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031675421", 
          "https://doi.org/10.1007/978-94-011-2506-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmaa.1999.6403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032390872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1751-5823.1998.tb00403.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034657511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(65)90049-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035033125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0255(88)90047-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035565224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-0255(88)90047-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035565224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1986.0091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037952295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0114(97)00389-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041626096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(86)90093-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043810381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0073527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045138978", 
          "https://doi.org/10.1007/bfb0073527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0073527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045138978", 
          "https://doi.org/10.1007/bfb0073527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(87)90033-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046385757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(87)90033-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046385757"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-09", 
    "datePublishedReg": "2000-09-01", 
    "description": "This paper summarizes some results on random fuzzy variables with existing expectation and variance, called random fuzzy variables of second order. Using the Frech\u00e9t-principle and \u2013 via support functions \u2013 the embedding of convex fuzzy sets into a Banach space of functions it especially presents a unified view on expectation and variance of random fuzzy variables. These notions are applied in developing linear statistical inference with fuzzy data. Detailed investigations are presented concerning best linear unbiased estimation in linear regression models with fuzzy observations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s001840000047", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041634", 
        "issn": [
          "0026-1335", 
          "1435-926X"
        ], 
        "name": "Metrika", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "name": "On random fuzzy variables of second order and their application to linear statistical inference with fuzzy data", 
    "pagination": "201-221", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e5fbf7fc4ea53e98cfcc42e7dd7245d01e0f80d8ae272eb7fc40940b32588f3d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s001840000047"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048276710"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s001840000047", 
      "https://app.dimensions.ai/details/publication/pub.1048276710"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000483.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s001840000047"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s001840000047'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s001840000047'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s001840000047'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s001840000047'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s001840000047 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N24207d4eca0e4ba28e0536817f1e5e4c
4 schema:citation sg:pub.10.1007/978-94-009-3943-1
5 sg:pub.10.1007/978-94-011-2506-2
6 sg:pub.10.1007/bfb0073527
7 sg:pub.10.1007/s004400050229
8 https://app.dimensions.ai/details/publication/pub.1006047231
9 https://app.dimensions.ai/details/publication/pub.1031675421
10 https://doi.org/10.1006/jmaa.1999.6403
11 https://doi.org/10.1016/0020-0255(78)90019-1
12 https://doi.org/10.1016/0020-0255(88)90047-3
13 https://doi.org/10.1016/0022-247x(65)90049-1
14 https://doi.org/10.1016/0022-247x(86)90093-4
15 https://doi.org/10.1016/0165-0114(81)90032-4
16 https://doi.org/10.1016/0165-0114(87)90033-9
17 https://doi.org/10.1016/s0020-0255(98)00010-3
18 https://doi.org/10.1016/s0165-0114(97)00389-8
19 https://doi.org/10.1016/s0378-3758(99)00107-x
20 https://doi.org/10.1098/rspa.1986.0091
21 https://doi.org/10.1111/j.1751-5823.1998.tb00403.x
22 schema:datePublished 2000-09
23 schema:datePublishedReg 2000-09-01
24 schema:description This paper summarizes some results on random fuzzy variables with existing expectation and variance, called random fuzzy variables of second order. Using the Frechét-principle and – via support functions – the embedding of convex fuzzy sets into a Banach space of functions it especially presents a unified view on expectation and variance of random fuzzy variables. These notions are applied in developing linear statistical inference with fuzzy data. Detailed investigations are presented concerning best linear unbiased estimation in linear regression models with fuzzy observations.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N89e7e0f25deb40d6a5ecc01719d400d0
29 N965b91d1c2244c79bb9f9b289360f83b
30 sg:journal.1041634
31 schema:name On random fuzzy variables of second order and their application to linear statistical inference with fuzzy data
32 schema:pagination 201-221
33 schema:productId N25698030ef8a45deb84c29c5f8838204
34 N777882d1abf44f15baec8c8da4072eb6
35 Nc979964891a646129d9c98abf7563b2f
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048276710
37 https://doi.org/10.1007/s001840000047
38 schema:sdDatePublished 2019-04-10T16:34
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nb4cdfe0408704d698daab2b2b4bf47d7
41 schema:url http://link.springer.com/10.1007/s001840000047
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N24207d4eca0e4ba28e0536817f1e5e4c rdf:first sg:person.014367310401.44
46 rdf:rest rdf:nil
47 N25698030ef8a45deb84c29c5f8838204 schema:name dimensions_id
48 schema:value pub.1048276710
49 rdf:type schema:PropertyValue
50 N777882d1abf44f15baec8c8da4072eb6 schema:name doi
51 schema:value 10.1007/s001840000047
52 rdf:type schema:PropertyValue
53 N89e7e0f25deb40d6a5ecc01719d400d0 schema:issueNumber 3
54 rdf:type schema:PublicationIssue
55 N965b91d1c2244c79bb9f9b289360f83b schema:volumeNumber 51
56 rdf:type schema:PublicationVolume
57 Nb4cdfe0408704d698daab2b2b4bf47d7 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Nc979964891a646129d9c98abf7563b2f schema:name readcube_id
60 schema:value e5fbf7fc4ea53e98cfcc42e7dd7245d01e0f80d8ae272eb7fc40940b32588f3d
61 rdf:type schema:PropertyValue
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
66 schema:name Statistics
67 rdf:type schema:DefinedTerm
68 sg:journal.1041634 schema:issn 0026-1335
69 1435-926X
70 schema:name Metrika
71 rdf:type schema:Periodical
72 sg:person.014367310401.44 schema:affiliation https://www.grid.ac/institutes/grid.6862.a
73 schema:familyName Näther
74 schema:givenName Wolfgang
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014367310401.44
76 rdf:type schema:Person
77 sg:pub.10.1007/978-94-009-3943-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006047231
78 https://doi.org/10.1007/978-94-009-3943-1
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/978-94-011-2506-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031675421
81 https://doi.org/10.1007/978-94-011-2506-2
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bfb0073527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045138978
84 https://doi.org/10.1007/bfb0073527
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/s004400050229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016459236
87 https://doi.org/10.1007/s004400050229
88 rdf:type schema:CreativeWork
89 https://app.dimensions.ai/details/publication/pub.1006047231 schema:CreativeWork
90 https://app.dimensions.ai/details/publication/pub.1031675421 schema:CreativeWork
91 https://doi.org/10.1006/jmaa.1999.6403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032390872
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0020-0255(78)90019-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000052059
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0020-0255(88)90047-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035565224
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0022-247x(65)90049-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035033125
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0022-247x(86)90093-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043810381
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0165-0114(81)90032-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014806977
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0165-0114(87)90033-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046385757
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/s0020-0255(98)00010-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010354457
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/s0165-0114(97)00389-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041626096
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/s0378-3758(99)00107-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017266628
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1098/rspa.1986.0091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037952295
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1111/j.1751-5823.1998.tb00403.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034657511
114 rdf:type schema:CreativeWork
115 https://www.grid.ac/institutes/grid.6862.a schema:alternateName Freiberg University Of Mining And Technology
116 schema:name TU Bergakademie Freiberg, Fakultät für Mathematik und Informatik, 09596 Freiberg, Germany (e-mail: naether@math.tu-freiberg.de), DE
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...