A constrained maximum likelihood estimation for skew normal mixtures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-06-30

AUTHORS

Libin Jin, Sung Nok Chiu, Jianhua Zhao, Lixing Zhu

ABSTRACT

For a finite mixture of skew normal distributions, the maximum likelihood estimator is not well-defined because of the unboundedness of the likelihood function when scale parameters go to zero and the divergency of the skewness parameter estimates. To overcome these two problems simultaneously, we propose constrained maximum likelihood estimators under constraints on both the scale parameters and the skewness parameters. The proposed estimators are consistent and asymptotically efficient under relaxed constraints on the scale and skewness parameters. Numerical simulations show that in finite sample cases the proposed estimators outperform the ordinary maximum likelihood estimators. Two real datasets are used to illustrate the success of the proposed approach. More... »

PAGES

1-29

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00184-022-00873-2

DOI

http://dx.doi.org/10.1007/s00184-022-00873-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1149109960


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Statistics and Mathematics College Interdisciplinary Research Institute of Data Science, Shanghai Lixin University of Accounting and Finance, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.440634.1", 
          "name": [
            "Statistics and Mathematics College Interdisciplinary Research Institute of Data Science, Shanghai Lixin University of Accounting and Finance, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "Libin", 
        "id": "sg:person.015475514531.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015475514531.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China", 
          "id": "http://www.grid.ac/institutes/grid.221309.b", 
          "name": [
            "Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chiu", 
        "givenName": "Sung Nok", 
        "id": "sg:person.0620700261.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620700261.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, China", 
          "id": "http://www.grid.ac/institutes/grid.464506.5", 
          "name": [
            "School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Jianhua", 
        "id": "sg:person.01302507702.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302507702.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, China", 
          "id": "http://www.grid.ac/institutes/grid.464506.5", 
          "name": [
            "Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China", 
            "School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Lixing", 
        "id": "sg:person.012304246411.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012304246411.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11749-010-0191-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027983196", 
          "https://doi.org/10.1007/s11749-010-0191-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-010-9225-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052887420", 
          "https://doi.org/10.1007/s11222-010-9225-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-006-9005-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018867433", 
          "https://doi.org/10.1007/s11222-006-9005-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-06-30", 
    "datePublishedReg": "2022-06-30", 
    "description": "For a finite mixture of skew normal distributions, the maximum likelihood estimator is not well-defined because of the unboundedness of the likelihood function when scale parameters go to zero and the divergency of the skewness parameter estimates. To overcome these two problems simultaneously, we propose constrained maximum likelihood estimators under constraints on both the scale parameters and the skewness parameters. The proposed estimators are consistent and asymptotically efficient under relaxed constraints on the scale and skewness parameters. Numerical simulations show that in finite sample cases the proposed estimators outperform the ordinary maximum likelihood estimators. Two real datasets are used to illustrate the success of the proposed approach.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00184-022-00873-2", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8892466", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8132002", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8128037", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041634", 
        "issn": [
          "0026-1335", 
          "1435-926X"
        ], 
        "name": "Metrika", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "maximum likelihood estimator", 
      "skewness parameter", 
      "likelihood estimator", 
      "scale parameter", 
      "Skew-Normal Mixture", 
      "skew-normal distribution", 
      "ordinary maximum likelihood estimator", 
      "finite sample case", 
      "maximum likelihood estimation", 
      "finite mixture", 
      "normal mixtures", 
      "likelihood function", 
      "likelihood estimation", 
      "estimator", 
      "normal distribution", 
      "numerical simulations", 
      "real datasets", 
      "sample cases", 
      "relaxed constraints", 
      "parameters", 
      "constraints", 
      "unboundedness", 
      "estimation", 
      "divergencies", 
      "simulations", 
      "problem", 
      "distribution", 
      "function", 
      "approach", 
      "cases", 
      "dataset", 
      "scale", 
      "mixture", 
      "success"
    ], 
    "name": "A constrained maximum likelihood estimation for skew normal mixtures", 
    "pagination": "1-29", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1149109960"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00184-022-00873-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00184-022-00873-2", 
      "https://app.dimensions.ai/details/publication/pub.1149109960"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_940.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00184-022-00873-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00873-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00873-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00873-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00873-2'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      21 PREDICATES      59 URIs      48 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00184-022-00873-2 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N407be9f40da54b00bbe5bf960a8afb57
4 schema:citation sg:pub.10.1007/s11222-006-9005-8
5 sg:pub.10.1007/s11222-010-9225-9
6 sg:pub.10.1007/s11749-010-0191-5
7 schema:datePublished 2022-06-30
8 schema:datePublishedReg 2022-06-30
9 schema:description For a finite mixture of skew normal distributions, the maximum likelihood estimator is not well-defined because of the unboundedness of the likelihood function when scale parameters go to zero and the divergency of the skewness parameter estimates. To overcome these two problems simultaneously, we propose constrained maximum likelihood estimators under constraints on both the scale parameters and the skewness parameters. The proposed estimators are consistent and asymptotically efficient under relaxed constraints on the scale and skewness parameters. Numerical simulations show that in finite sample cases the proposed estimators outperform the ordinary maximum likelihood estimators. Two real datasets are used to illustrate the success of the proposed approach.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf sg:journal.1041634
13 schema:keywords Skew-Normal Mixture
14 approach
15 cases
16 constraints
17 dataset
18 distribution
19 divergencies
20 estimation
21 estimator
22 finite mixture
23 finite sample case
24 function
25 likelihood estimation
26 likelihood estimator
27 likelihood function
28 maximum likelihood estimation
29 maximum likelihood estimator
30 mixture
31 normal distribution
32 normal mixtures
33 numerical simulations
34 ordinary maximum likelihood estimator
35 parameters
36 problem
37 real datasets
38 relaxed constraints
39 sample cases
40 scale
41 scale parameter
42 simulations
43 skew-normal distribution
44 skewness parameter
45 success
46 unboundedness
47 schema:name A constrained maximum likelihood estimation for skew normal mixtures
48 schema:pagination 1-29
49 schema:productId N708138f418ef40b6bb20d336d6423227
50 N7af3712bf69f4770bbdbf18831663a39
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149109960
52 https://doi.org/10.1007/s00184-022-00873-2
53 schema:sdDatePublished 2022-09-02T16:08
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N3227f90c85f644a0b8f6fc6be6627884
56 schema:url https://doi.org/10.1007/s00184-022-00873-2
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N3227f90c85f644a0b8f6fc6be6627884 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N407be9f40da54b00bbe5bf960a8afb57 rdf:first sg:person.015475514531.40
63 rdf:rest N95b1d29c6697466d88c7a6b095d7aea8
64 N708138f418ef40b6bb20d336d6423227 schema:name doi
65 schema:value 10.1007/s00184-022-00873-2
66 rdf:type schema:PropertyValue
67 N7af3712bf69f4770bbdbf18831663a39 schema:name dimensions_id
68 schema:value pub.1149109960
69 rdf:type schema:PropertyValue
70 N90cc861064694aa6aaa8576fb1da7564 rdf:first sg:person.01302507702.27
71 rdf:rest Nf72ec1ad79794bcd837e1ddb5540b5ed
72 N95b1d29c6697466d88c7a6b095d7aea8 rdf:first sg:person.0620700261.45
73 rdf:rest N90cc861064694aa6aaa8576fb1da7564
74 Nf72ec1ad79794bcd837e1ddb5540b5ed rdf:first sg:person.012304246411.00
75 rdf:rest rdf:nil
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
80 schema:name Statistics
81 rdf:type schema:DefinedTerm
82 sg:grant.8128037 http://pending.schema.org/fundedItem sg:pub.10.1007/s00184-022-00873-2
83 rdf:type schema:MonetaryGrant
84 sg:grant.8132002 http://pending.schema.org/fundedItem sg:pub.10.1007/s00184-022-00873-2
85 rdf:type schema:MonetaryGrant
86 sg:grant.8892466 http://pending.schema.org/fundedItem sg:pub.10.1007/s00184-022-00873-2
87 rdf:type schema:MonetaryGrant
88 sg:journal.1041634 schema:issn 0026-1335
89 1435-926X
90 schema:name Metrika
91 schema:publisher Springer Nature
92 rdf:type schema:Periodical
93 sg:person.012304246411.00 schema:affiliation grid-institutes:grid.464506.5
94 schema:familyName Zhu
95 schema:givenName Lixing
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012304246411.00
97 rdf:type schema:Person
98 sg:person.01302507702.27 schema:affiliation grid-institutes:grid.464506.5
99 schema:familyName Zhao
100 schema:givenName Jianhua
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302507702.27
102 rdf:type schema:Person
103 sg:person.015475514531.40 schema:affiliation grid-institutes:grid.440634.1
104 schema:familyName Jin
105 schema:givenName Libin
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015475514531.40
107 rdf:type schema:Person
108 sg:person.0620700261.45 schema:affiliation grid-institutes:grid.221309.b
109 schema:familyName Chiu
110 schema:givenName Sung Nok
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620700261.45
112 rdf:type schema:Person
113 sg:pub.10.1007/s11222-006-9005-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018867433
114 https://doi.org/10.1007/s11222-006-9005-8
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s11222-010-9225-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052887420
117 https://doi.org/10.1007/s11222-010-9225-9
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11749-010-0191-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027983196
120 https://doi.org/10.1007/s11749-010-0191-5
121 rdf:type schema:CreativeWork
122 grid-institutes:grid.221309.b schema:alternateName Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
123 schema:name Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
124 rdf:type schema:Organization
125 grid-institutes:grid.440634.1 schema:alternateName Statistics and Mathematics College Interdisciplinary Research Institute of Data Science, Shanghai Lixin University of Accounting and Finance, Shanghai, China
126 schema:name Statistics and Mathematics College Interdisciplinary Research Institute of Data Science, Shanghai Lixin University of Accounting and Finance, Shanghai, China
127 rdf:type schema:Organization
128 grid-institutes:grid.464506.5 schema:alternateName School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, China
129 schema:name Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
130 School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, China
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...