Bayesian empirical likelihood of quantile regression with missing observations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-06-18

AUTHORS

Chang-Sheng Liu, Han-Ying Liang

ABSTRACT

In this paper, we focus on partially linear varying coefficient quantile regression with observations missing at random, which allows the responses or responses and covariates simultaneously missing. By means of empirical likelihood method, we construct posterior distributions of the parameter in the model, and investigate their large sample properties under fixed prior. Meanwhile, we use a Bayesian hierarchical model based on empirical likelihood, spike and slab Gaussian priors to discuss variable selection. By using MCMC algorithm, finite sample performance of the proposed methods is investigated via simulations, and real data analysis is discussed too. More... »

PAGES

1-29

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00184-022-00869-y

DOI

http://dx.doi.org/10.1007/s00184-022-00869-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148785789


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Physics, Henan University of Urban Construction, 467036, Henan, China", 
          "id": "http://www.grid.ac/institutes/grid.440740.3", 
          "name": [
            "School of Mathematics and Physics, Henan University of Urban Construction, 467036, Henan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Chang-Sheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematical Sciences, Tongji University, 200092, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.24516.34", 
          "name": [
            "School of Mathematical Sciences, Tongji University, 200092, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Han-Ying", 
        "id": "sg:person.013765025343.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013765025343.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00184-016-0586-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042226135", 
          "https://doi.org/10.1007/s00184-016-0586-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00362-015-0737-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003179752", 
          "https://doi.org/10.1007/s00362-015-0737-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10182-013-0210-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035282911", 
          "https://doi.org/10.1007/s10182-013-0210-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.jkss.2017.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084781906", 
          "https://doi.org/10.1016/j.jkss.2017.03.002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10985-010-9175-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008947885", 
          "https://doi.org/10.1007/s10985-010-9175-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-06-18", 
    "datePublishedReg": "2022-06-18", 
    "description": "In this paper, we focus on partially linear varying coefficient quantile regression with observations missing at random, which allows the responses or responses and covariates simultaneously missing. By means of empirical likelihood method, we construct posterior distributions of the parameter in the model, and investigate their large sample properties under fixed prior. Meanwhile, we use a Bayesian hierarchical model based on empirical likelihood, spike and slab Gaussian priors to discuss variable selection. By using MCMC algorithm, finite sample performance of the proposed methods is investigated via simulations, and real data analysis is discussed too.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00184-022-00869-y", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041634", 
        "issn": [
          "0026-1335", 
          "1435-926X"
        ], 
        "name": "Metrika", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "empirical likelihood", 
      "Bayesian empirical likelihood", 
      "large sample properties", 
      "finite sample performance", 
      "real data analysis", 
      "empirical likelihood method", 
      "MCMC algorithm", 
      "Gaussian priors", 
      "posterior distribution", 
      "Bayesian hierarchical model", 
      "sample properties", 
      "sample performance", 
      "missing observations", 
      "quantile regression", 
      "variable selection", 
      "likelihood method", 
      "hierarchical model", 
      "priors", 
      "data analysis", 
      "model", 
      "algorithm", 
      "simulations", 
      "parameters", 
      "distribution", 
      "properties", 
      "observations", 
      "regression", 
      "covariates", 
      "means", 
      "likelihood", 
      "performance", 
      "selection", 
      "analysis", 
      "response", 
      "method", 
      "paper"
    ], 
    "name": "Bayesian empirical likelihood of quantile regression with missing observations", 
    "pagination": "1-29", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148785789"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00184-022-00869-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00184-022-00869-y", 
      "https://app.dimensions.ai/details/publication/pub.1148785789"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_953.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00184-022-00869-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00869-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00869-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00869-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00869-y'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      21 PREDICATES      63 URIs      50 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00184-022-00869-y schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N8ea69d24831c4a7fab35e0c8a797ef5b
4 schema:citation sg:pub.10.1007/s00184-016-0586-8
5 sg:pub.10.1007/s00362-015-0737-4
6 sg:pub.10.1007/s10182-013-0210-4
7 sg:pub.10.1007/s10985-010-9175-8
8 sg:pub.10.1016/j.jkss.2017.03.002
9 schema:datePublished 2022-06-18
10 schema:datePublishedReg 2022-06-18
11 schema:description In this paper, we focus on partially linear varying coefficient quantile regression with observations missing at random, which allows the responses or responses and covariates simultaneously missing. By means of empirical likelihood method, we construct posterior distributions of the parameter in the model, and investigate their large sample properties under fixed prior. Meanwhile, we use a Bayesian hierarchical model based on empirical likelihood, spike and slab Gaussian priors to discuss variable selection. By using MCMC algorithm, finite sample performance of the proposed methods is investigated via simulations, and real data analysis is discussed too.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf sg:journal.1041634
15 schema:keywords Bayesian empirical likelihood
16 Bayesian hierarchical model
17 Gaussian priors
18 MCMC algorithm
19 algorithm
20 analysis
21 covariates
22 data analysis
23 distribution
24 empirical likelihood
25 empirical likelihood method
26 finite sample performance
27 hierarchical model
28 large sample properties
29 likelihood
30 likelihood method
31 means
32 method
33 missing observations
34 model
35 observations
36 paper
37 parameters
38 performance
39 posterior distribution
40 priors
41 properties
42 quantile regression
43 real data analysis
44 regression
45 response
46 sample performance
47 sample properties
48 selection
49 simulations
50 variable selection
51 schema:name Bayesian empirical likelihood of quantile regression with missing observations
52 schema:pagination 1-29
53 schema:productId Na28fda7ab51a4ab99d63426b807be4c0
54 Ne232f0652adb4c3fb36cc80aa77b8417
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148785789
56 https://doi.org/10.1007/s00184-022-00869-y
57 schema:sdDatePublished 2022-09-02T16:07
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Nd4893a3f27d9471c8940db753dad969f
60 schema:url https://doi.org/10.1007/s00184-022-00869-y
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N8ea69d24831c4a7fab35e0c8a797ef5b rdf:first Ne492c92b6c834fc2be1122a14e1f1900
65 rdf:rest Nc595490422d34206a286535185a32971
66 Na28fda7ab51a4ab99d63426b807be4c0 schema:name dimensions_id
67 schema:value pub.1148785789
68 rdf:type schema:PropertyValue
69 Nc595490422d34206a286535185a32971 rdf:first sg:person.013765025343.28
70 rdf:rest rdf:nil
71 Nd4893a3f27d9471c8940db753dad969f schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Ne232f0652adb4c3fb36cc80aa77b8417 schema:name doi
74 schema:value 10.1007/s00184-022-00869-y
75 rdf:type schema:PropertyValue
76 Ne492c92b6c834fc2be1122a14e1f1900 schema:affiliation grid-institutes:grid.440740.3
77 schema:familyName Liu
78 schema:givenName Chang-Sheng
79 rdf:type schema:Person
80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
81 schema:name Mathematical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
84 schema:name Statistics
85 rdf:type schema:DefinedTerm
86 sg:journal.1041634 schema:issn 0026-1335
87 1435-926X
88 schema:name Metrika
89 schema:publisher Springer Nature
90 rdf:type schema:Periodical
91 sg:person.013765025343.28 schema:affiliation grid-institutes:grid.24516.34
92 schema:familyName Liang
93 schema:givenName Han-Ying
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013765025343.28
95 rdf:type schema:Person
96 sg:pub.10.1007/s00184-016-0586-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042226135
97 https://doi.org/10.1007/s00184-016-0586-8
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s00362-015-0737-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003179752
100 https://doi.org/10.1007/s00362-015-0737-4
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s10182-013-0210-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035282911
103 https://doi.org/10.1007/s10182-013-0210-4
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s10985-010-9175-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008947885
106 https://doi.org/10.1007/s10985-010-9175-8
107 rdf:type schema:CreativeWork
108 sg:pub.10.1016/j.jkss.2017.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084781906
109 https://doi.org/10.1016/j.jkss.2017.03.002
110 rdf:type schema:CreativeWork
111 grid-institutes:grid.24516.34 schema:alternateName School of Mathematical Sciences, Tongji University, 200092, Shanghai, China
112 schema:name School of Mathematical Sciences, Tongji University, 200092, Shanghai, China
113 rdf:type schema:Organization
114 grid-institutes:grid.440740.3 schema:alternateName School of Mathematics and Physics, Henan University of Urban Construction, 467036, Henan, China
115 schema:name School of Mathematics and Physics, Henan University of Urban Construction, 467036, Henan, China
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...