Communication-efficient sparse composite quantile regression for distributed data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-06-16

AUTHORS

Yaohong Yang, Lei Wang

ABSTRACT

Composite quantile regression (CQR) estimator is a robust and efficient alternative to the M-estimator and ordinary quantile regression estimator in linear models. In order to construct sparse CQR estimation in the presence of distributed data, we propose a penalized communication-efficient surrogate loss function that is computationally superior to the original global loss function. The proposed method only needs the worker machines to compute the gradient based on local data without a penalty and the central machine to solve a regular estimation problem. We prove that the estimation errors based on the proposed method match the estimation error bound of the centralized method by analyzing the entire data set simultaneously. A modified alternating direction method of multipliers algorithm is developed to efficiently obtain the sparse CQR estimator. The performance of the proposed estimator is studied through simulation, and an application to a real data set is also presented. More... »

PAGES

1-23

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00184-022-00868-z

DOI

http://dx.doi.org/10.1007/s00184-022-00868-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148755462


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Statistics and Data Science and LPMC, Nankai University, 300071, Tianjin, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.216938.7", 
          "name": [
            "School of Statistics and Data Science and LPMC, Nankai University, 300071, Tianjin, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Yaohong", 
        "id": "sg:person.015225536624.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015225536624.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Statistics and Data Science and LPMC, Nankai University, 300071, Tianjin, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.216938.7", 
          "name": [
            "School of Statistics and Data Science and LPMC, Nankai University, 300071, Tianjin, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Lei", 
        "id": "sg:person.015752660720.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015752660720.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-22147-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047507889", 
          "https://doi.org/10.1007/978-3-642-22147-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2545-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011708206", 
          "https://doi.org/10.1007/978-1-4757-2545-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-06-16", 
    "datePublishedReg": "2022-06-16", 
    "description": "Composite quantile regression (CQR) estimator is a robust and efficient alternative to the M-estimator and ordinary quantile regression estimator in linear models. In order to construct sparse CQR estimation in the presence of distributed data, we propose a penalized communication-efficient surrogate loss function that is computationally superior to the original global loss function. The proposed method only needs the worker machines to compute the gradient based on local data without a penalty and the central machine to solve a regular estimation problem. We prove that the estimation errors based on the proposed method match the estimation error bound of the centralized method by analyzing the entire data set simultaneously. A modified alternating direction method of multipliers algorithm is developed to efficiently obtain the sparse CQR estimator. The performance of the proposed estimator is studied through simulation, and an application to a real data set is also presented.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00184-022-00868-z", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8132273", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041634", 
        "issn": [
          "0026-1335", 
          "1435-926X"
        ], 
        "name": "Metrika", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "estimation error", 
      "estimation problem", 
      "multipliers (ADMM) algorithm", 
      "centralized method", 
      "efficient alternative", 
      "composite quantile regression", 
      "direction method", 
      "machine", 
      "method", 
      "error", 
      "simulations", 
      "performance", 
      "estimator", 
      "applications", 
      "estimation", 
      "gradient", 
      "linear model", 
      "loss function", 
      "order", 
      "penalty", 
      "algorithm", 
      "M-estimators", 
      "model", 
      "alternative", 
      "problem", 
      "data", 
      "data sets", 
      "function", 
      "local data", 
      "entire data", 
      "set", 
      "presence", 
      "real data sets", 
      "global loss function", 
      "surrogate loss functions", 
      "central machine", 
      "worker machines", 
      "quantile regression", 
      "regression", 
      "regression estimator", 
      "quantile regression estimator", 
      "composite quantile regression estimator"
    ], 
    "name": "Communication-efficient sparse composite quantile regression for distributed data", 
    "pagination": "1-23", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148755462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00184-022-00868-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00184-022-00868-z", 
      "https://app.dimensions.ai/details/publication/pub.1148755462"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_925.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00184-022-00868-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00868-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00868-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00868-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00868-z'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      21 PREDICATES      66 URIs      56 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00184-022-00868-z schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N7e84ee826da24792b8b98c48198bd20e
4 schema:citation sg:pub.10.1007/978-1-4757-2545-2
5 sg:pub.10.1007/978-3-642-22147-7
6 schema:datePublished 2022-06-16
7 schema:datePublishedReg 2022-06-16
8 schema:description Composite quantile regression (CQR) estimator is a robust and efficient alternative to the M-estimator and ordinary quantile regression estimator in linear models. In order to construct sparse CQR estimation in the presence of distributed data, we propose a penalized communication-efficient surrogate loss function that is computationally superior to the original global loss function. The proposed method only needs the worker machines to compute the gradient based on local data without a penalty and the central machine to solve a regular estimation problem. We prove that the estimation errors based on the proposed method match the estimation error bound of the centralized method by analyzing the entire data set simultaneously. A modified alternating direction method of multipliers algorithm is developed to efficiently obtain the sparse CQR estimator. The performance of the proposed estimator is studied through simulation, and an application to a real data set is also presented.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf sg:journal.1041634
12 schema:keywords M-estimators
13 algorithm
14 alternative
15 applications
16 central machine
17 centralized method
18 composite quantile regression
19 composite quantile regression estimator
20 data
21 data sets
22 direction method
23 efficient alternative
24 entire data
25 error
26 estimation
27 estimation error
28 estimation problem
29 estimator
30 function
31 global loss function
32 gradient
33 linear model
34 local data
35 loss function
36 machine
37 method
38 model
39 multipliers (ADMM) algorithm
40 order
41 penalty
42 performance
43 presence
44 problem
45 quantile regression
46 quantile regression estimator
47 real data sets
48 regression
49 regression estimator
50 set
51 simulations
52 surrogate loss functions
53 worker machines
54 schema:name Communication-efficient sparse composite quantile regression for distributed data
55 schema:pagination 1-23
56 schema:productId N29e4592478cc4925b39fc2b4d65d1b68
57 Na57e6987b94c488a8f213f8726e3b6d4
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148755462
59 https://doi.org/10.1007/s00184-022-00868-z
60 schema:sdDatePublished 2022-09-02T16:07
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N59069edbbf0f45a3973aad1c3de0bbe5
63 schema:url https://doi.org/10.1007/s00184-022-00868-z
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N29e4592478cc4925b39fc2b4d65d1b68 schema:name dimensions_id
68 schema:value pub.1148755462
69 rdf:type schema:PropertyValue
70 N4ccb9216c0c94f3080bdd755a16d716a rdf:first sg:person.015752660720.76
71 rdf:rest rdf:nil
72 N59069edbbf0f45a3973aad1c3de0bbe5 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N7e84ee826da24792b8b98c48198bd20e rdf:first sg:person.015225536624.12
75 rdf:rest N4ccb9216c0c94f3080bdd755a16d716a
76 Na57e6987b94c488a8f213f8726e3b6d4 schema:name doi
77 schema:value 10.1007/s00184-022-00868-z
78 rdf:type schema:PropertyValue
79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
80 schema:name Mathematical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
83 schema:name Statistics
84 rdf:type schema:DefinedTerm
85 sg:grant.8132273 http://pending.schema.org/fundedItem sg:pub.10.1007/s00184-022-00868-z
86 rdf:type schema:MonetaryGrant
87 sg:journal.1041634 schema:issn 0026-1335
88 1435-926X
89 schema:name Metrika
90 schema:publisher Springer Nature
91 rdf:type schema:Periodical
92 sg:person.015225536624.12 schema:affiliation grid-institutes:grid.216938.7
93 schema:familyName Yang
94 schema:givenName Yaohong
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015225536624.12
96 rdf:type schema:Person
97 sg:person.015752660720.76 schema:affiliation grid-institutes:grid.216938.7
98 schema:familyName Wang
99 schema:givenName Lei
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015752660720.76
101 rdf:type schema:Person
102 sg:pub.10.1007/978-1-4757-2545-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011708206
103 https://doi.org/10.1007/978-1-4757-2545-2
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/978-3-642-22147-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047507889
106 https://doi.org/10.1007/978-3-642-22147-7
107 rdf:type schema:CreativeWork
108 grid-institutes:grid.216938.7 schema:alternateName School of Statistics and Data Science and LPMC, Nankai University, 300071, Tianjin, People’s Republic of China
109 schema:name School of Statistics and Data Science and LPMC, Nankai University, 300071, Tianjin, People’s Republic of China
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...