Empirical likelihood based tests for detecting the presence of significant predictors in marginal quantile regression View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-05-21

AUTHORS

Songqiao Tang, Huiyu Wang, Guanao Yan, Lixin Zhang

ABSTRACT

This article investigates detecting the presence of significant predictors in marginal quantile regression. The main idea comes from the connection between the quantile correlation and the slope parameter of the marginal quantile regression, which is quite different from other methods. By introducing the local linear model and the plug-in empirical likelihood method, consistent asymptotic distribution and its adjusted version are obtained. We not only circumvent the non-regularity encountered by post-model-selected estimators but also make the results more concise. Two adaptive resampling test procedures are proposed in practice by comparing the t-statistics with a threshold to decide whether to use the traditional centered percentile bootstrap or otherwise adapt to the asymptotic distribution under the local model. Simulation studies compare these two resampling tests with other competing methods in several cases. Results show that the approaches proposed are more robust for each quantile level and can control type I error well. Two real datasets from Forbes magazine and the HIV drug resistance database are also applied to illustrate the new methods. More... »

PAGES

1-31

References to SciGraph publications

  • 2001-09. Empirical Likelihood for a Class of Functionals of Survival Distribution with Censored Data in ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00184-022-00866-1

    DOI

    http://dx.doi.org/10.1007/s00184-022-00866-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1148060146


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Mathematical Sciences, Zhejiang University, 310027, Hangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "School of Mathematical Sciences, Zhejiang University, 310027, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tang", 
            "givenName": "Songqiao", 
            "id": "sg:person.015710627470.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015710627470.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mathematical Sciences, Zhejiang University, 310027, Hangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "School of Mathematical Sciences, Zhejiang University, 310027, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Huiyu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mathematical Sciences, Zhejiang University, 310027, Hangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "School of Mathematical Sciences, Zhejiang University, 310027, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yan", 
            "givenName": "Guanao", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mathematical Sciences, Zhejiang University, 310027, Hangzhou, China", 
              "id": "http://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "School of Mathematical Sciences, Zhejiang University, 310027, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Lixin", 
            "id": "sg:person.015035232433.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015035232433.61"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1014617112870", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034851071", 
              "https://doi.org/10.1023/a:1014617112870"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-05-21", 
        "datePublishedReg": "2022-05-21", 
        "description": "This article investigates detecting the presence of significant predictors in marginal quantile regression. The main idea comes from the connection between the quantile correlation and the slope parameter of the marginal quantile regression, which is quite different from other methods. By introducing the local linear model and the plug-in empirical likelihood method, consistent asymptotic distribution and its adjusted version are obtained. We not only circumvent the non-regularity encountered by post-model-selected estimators but also make the results more concise. Two adaptive resampling test procedures are proposed in practice by comparing the t-statistics with a threshold to decide whether to use the traditional centered percentile bootstrap or otherwise adapt to the asymptotic distribution under the local model. Simulation studies compare these two resampling tests with other competing methods in several cases. Results show that the approaches proposed are more robust for each quantile level and can control type I error well. Two real datasets from Forbes magazine and the HIV drug resistance database are also applied to illustrate the new methods.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00184-022-00866-1", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8131563", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1041634", 
            "issn": [
              "0026-1335", 
              "1435-926X"
            ], 
            "name": "Metrika", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "marginal quantile regression", 
          "asymptotic distribution", 
          "local linear models", 
          "empirical likelihood method", 
          "quantile regression", 
          "empirical likelihood", 
          "likelihood method", 
          "percentile bootstrap", 
          "local models", 
          "simulation study", 
          "linear model", 
          "quantile correlation", 
          "t-statistic", 
          "quantile levels", 
          "main idea", 
          "slope parameter", 
          "real datasets", 
          "new method", 
          "estimator", 
          "bootstrap", 
          "model", 
          "distribution", 
          "parameters", 
          "regression", 
          "version", 
          "results", 
          "approach", 
          "connection", 
          "idea", 
          "test procedure", 
          "cases", 
          "dataset", 
          "procedure", 
          "threshold", 
          "likelihood", 
          "presence", 
          "Forbes magazine", 
          "correlation", 
          "article", 
          "plug", 
          "test", 
          "type I", 
          "study", 
          "predictors", 
          "levels", 
          "database", 
          "practice", 
          "HIV Drug Resistance Database", 
          "Drug Resistance Database", 
          "magazines", 
          "significant predictors", 
          "method"
        ], 
        "name": "Empirical likelihood based tests for detecting the presence of significant predictors in marginal quantile regression", 
        "pagination": "1-31", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1148060146"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00184-022-00866-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00184-022-00866-1", 
          "https://app.dimensions.ai/details/publication/pub.1148060146"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_945.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00184-022-00866-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00866-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00866-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00866-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00866-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    128 TRIPLES      21 PREDICATES      74 URIs      65 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00184-022-00866-1 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author Nbe5e788f272d4d6ca636501be5b8ac10
    4 schema:citation sg:pub.10.1023/a:1014617112870
    5 schema:datePublished 2022-05-21
    6 schema:datePublishedReg 2022-05-21
    7 schema:description This article investigates detecting the presence of significant predictors in marginal quantile regression. The main idea comes from the connection between the quantile correlation and the slope parameter of the marginal quantile regression, which is quite different from other methods. By introducing the local linear model and the plug-in empirical likelihood method, consistent asymptotic distribution and its adjusted version are obtained. We not only circumvent the non-regularity encountered by post-model-selected estimators but also make the results more concise. Two adaptive resampling test procedures are proposed in practice by comparing the t-statistics with a threshold to decide whether to use the traditional centered percentile bootstrap or otherwise adapt to the asymptotic distribution under the local model. Simulation studies compare these two resampling tests with other competing methods in several cases. Results show that the approaches proposed are more robust for each quantile level and can control type I error well. Two real datasets from Forbes magazine and the HIV drug resistance database are also applied to illustrate the new methods.
    8 schema:genre article
    9 schema:isAccessibleForFree false
    10 schema:isPartOf sg:journal.1041634
    11 schema:keywords Drug Resistance Database
    12 Forbes magazine
    13 HIV Drug Resistance Database
    14 approach
    15 article
    16 asymptotic distribution
    17 bootstrap
    18 cases
    19 connection
    20 correlation
    21 database
    22 dataset
    23 distribution
    24 empirical likelihood
    25 empirical likelihood method
    26 estimator
    27 idea
    28 levels
    29 likelihood
    30 likelihood method
    31 linear model
    32 local linear models
    33 local models
    34 magazines
    35 main idea
    36 marginal quantile regression
    37 method
    38 model
    39 new method
    40 parameters
    41 percentile bootstrap
    42 plug
    43 practice
    44 predictors
    45 presence
    46 procedure
    47 quantile correlation
    48 quantile levels
    49 quantile regression
    50 real datasets
    51 regression
    52 results
    53 significant predictors
    54 simulation study
    55 slope parameter
    56 study
    57 t-statistic
    58 test
    59 test procedure
    60 threshold
    61 type I
    62 version
    63 schema:name Empirical likelihood based tests for detecting the presence of significant predictors in marginal quantile regression
    64 schema:pagination 1-31
    65 schema:productId N73689274c0a844499785bea8f9e836cf
    66 Nefc8ae2968d64cc2b5bd2ceb5b8d3bea
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148060146
    68 https://doi.org/10.1007/s00184-022-00866-1
    69 schema:sdDatePublished 2022-10-01T06:50
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher Nccf82a96375141b68f8eb2695a224041
    72 schema:url https://doi.org/10.1007/s00184-022-00866-1
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N73689274c0a844499785bea8f9e836cf schema:name doi
    77 schema:value 10.1007/s00184-022-00866-1
    78 rdf:type schema:PropertyValue
    79 N8ca6cc10464445a290b6c4d46c1cd15f schema:affiliation grid-institutes:grid.13402.34
    80 schema:familyName Wang
    81 schema:givenName Huiyu
    82 rdf:type schema:Person
    83 Na8b721563fd54ee8be2a9befbf5ef383 schema:affiliation grid-institutes:grid.13402.34
    84 schema:familyName Yan
    85 schema:givenName Guanao
    86 rdf:type schema:Person
    87 Nbae46658664c447bbe677dfe4ee095c4 rdf:first sg:person.015035232433.61
    88 rdf:rest rdf:nil
    89 Nbe4a035a1c644468b4f542a4758b5365 rdf:first Na8b721563fd54ee8be2a9befbf5ef383
    90 rdf:rest Nbae46658664c447bbe677dfe4ee095c4
    91 Nbe5e788f272d4d6ca636501be5b8ac10 rdf:first sg:person.015710627470.42
    92 rdf:rest Ndfbacca5ebdb43cc8cf9f472fd29c5de
    93 Nccf82a96375141b68f8eb2695a224041 schema:name Springer Nature - SN SciGraph project
    94 rdf:type schema:Organization
    95 Ndfbacca5ebdb43cc8cf9f472fd29c5de rdf:first N8ca6cc10464445a290b6c4d46c1cd15f
    96 rdf:rest Nbe4a035a1c644468b4f542a4758b5365
    97 Nefc8ae2968d64cc2b5bd2ceb5b8d3bea schema:name dimensions_id
    98 schema:value pub.1148060146
    99 rdf:type schema:PropertyValue
    100 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Mathematical Sciences
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Statistics
    105 rdf:type schema:DefinedTerm
    106 sg:grant.8131563 http://pending.schema.org/fundedItem sg:pub.10.1007/s00184-022-00866-1
    107 rdf:type schema:MonetaryGrant
    108 sg:journal.1041634 schema:issn 0026-1335
    109 1435-926X
    110 schema:name Metrika
    111 schema:publisher Springer Nature
    112 rdf:type schema:Periodical
    113 sg:person.015035232433.61 schema:affiliation grid-institutes:grid.13402.34
    114 schema:familyName Zhang
    115 schema:givenName Lixin
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015035232433.61
    117 rdf:type schema:Person
    118 sg:person.015710627470.42 schema:affiliation grid-institutes:grid.13402.34
    119 schema:familyName Tang
    120 schema:givenName Songqiao
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015710627470.42
    122 rdf:type schema:Person
    123 sg:pub.10.1023/a:1014617112870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034851071
    124 https://doi.org/10.1023/a:1014617112870
    125 rdf:type schema:CreativeWork
    126 grid-institutes:grid.13402.34 schema:alternateName School of Mathematical Sciences, Zhejiang University, 310027, Hangzhou, China
    127 schema:name School of Mathematical Sciences, Zhejiang University, 310027, Hangzhou, China
    128 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...