Lasso regression in sparse linear model with φ-mixing errors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-02-18

AUTHORS

Ling Peng, Yan Zhu, Wenxuan Zhong

ABSTRACT

This paper investigates the Lasso method for sparse linear models with exponential φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-mixing errors under a fixed design, where the number of covariates p is large, or even much larger than the sample size n. The non-asymptotic concentration inequalities for the estimation and prediction errors of the Lasso estimators are given when the errors follow the Gaussian distribution and the sub-exponential distribution, respectively. The prediction and variable selection performance of Lasso estimators are further illustrated through numerical simulations. Finally, the results of the empirical application show that the Index Tracking Fund based on the sparse selection of Lasso can closely track the trend of the target index, and thus provide some useful guidance for the investors. More... »

PAGES

1-26

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00184-022-00860-7

DOI

http://dx.doi.org/10.1007/s00184-022-00860-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1145698701


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Statistics, Jiangxi University of Economics and Finance, 330013, Nanchang, Jiangxi, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "School of Statistics, Jiangxi University of Economics and Finance, 330013, Nanchang, Jiangxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Ling", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Science, University of Shanghai for Science and Technology, 200293, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.267139.8", 
          "name": [
            "College of Science, University of Shanghai for Science and Technology, 200293, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Yan", 
        "id": "sg:person.013552460547.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013552460547.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Statistics and Information, Shanghai University of International Business and Economics, 201600, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.443526.2", 
          "name": [
            "School of Statistics and Information, Shanghai University of International Business and Economics, 201600, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong", 
        "givenName": "Wenxuan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-20192-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039594045", 
          "https://doi.org/10.1007/978-3-642-20192-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13171-012-0006-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011474422", 
          "https://doi.org/10.1007/s13171-012-0006-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-05261-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035847642", 
          "https://doi.org/10.1007/978-3-642-05261-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-02-18", 
    "datePublishedReg": "2022-02-18", 
    "description": "This paper investigates the Lasso method for sparse linear models with exponential \u03c6\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varphi $$\\end{document}-mixing errors under a fixed design, where the number of covariates p is large, or even much larger than the sample size n. The non-asymptotic concentration inequalities for the estimation and prediction errors of the Lasso estimators are given when the errors follow the Gaussian distribution and the sub-exponential distribution, respectively. The prediction and variable selection performance of Lasso estimators are further illustrated through numerical simulations. Finally, the results of the empirical application show that the Index Tracking Fund based on the sparse selection of Lasso can closely track the trend of the target index, and thus provide some useful guidance for the investors.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00184-022-00860-7", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8892450", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041634", 
        "issn": [
          "0026-1335", 
          "1435-926X"
        ], 
        "name": "Metrika", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "sparse linear models", 
      "Lasso estimator", 
      "sample size n.", 
      "variable selection performance", 
      "linear model", 
      "covariates p", 
      "concentration inequalities", 
      "size n.", 
      "Gaussian distribution", 
      "LASSO method", 
      "numerical simulations", 
      "sparse selection", 
      "estimator", 
      "empirical application", 
      "selection performance", 
      "prediction error", 
      "LASSO regression", 
      "error", 
      "sub-exponential distribution", 
      "LASSO", 
      "exponential", 
      "model", 
      "inequality", 
      "estimation", 
      "distribution", 
      "simulations", 
      "index tracking funds", 
      "target index", 
      "prediction", 
      "useful guidance", 
      "n.", 
      "applications", 
      "number", 
      "performance", 
      "design", 
      "results", 
      "regression", 
      "selection", 
      "method", 
      "index", 
      "guidance", 
      "investors", 
      "trends", 
      "funds", 
      "paper"
    ], 
    "name": "Lasso regression in sparse linear model with \u03c6-mixing errors", 
    "pagination": "1-26", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1145698701"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00184-022-00860-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00184-022-00860-7", 
      "https://app.dimensions.ai/details/publication/pub.1145698701"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_929.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00184-022-00860-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00860-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00860-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00860-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00860-7'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      21 PREDICATES      70 URIs      59 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00184-022-00860-7 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N7ab7f5e0c7e344a48d476410c4142175
4 schema:citation sg:pub.10.1007/978-3-642-05261-3
5 sg:pub.10.1007/978-3-642-20192-9
6 sg:pub.10.1007/s13171-012-0006-8
7 schema:datePublished 2022-02-18
8 schema:datePublishedReg 2022-02-18
9 schema:description This paper investigates the Lasso method for sparse linear models with exponential φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-mixing errors under a fixed design, where the number of covariates p is large, or even much larger than the sample size n. The non-asymptotic concentration inequalities for the estimation and prediction errors of the Lasso estimators are given when the errors follow the Gaussian distribution and the sub-exponential distribution, respectively. The prediction and variable selection performance of Lasso estimators are further illustrated through numerical simulations. Finally, the results of the empirical application show that the Index Tracking Fund based on the sparse selection of Lasso can closely track the trend of the target index, and thus provide some useful guidance for the investors.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf sg:journal.1041634
13 schema:keywords Gaussian distribution
14 LASSO
15 LASSO method
16 LASSO regression
17 Lasso estimator
18 applications
19 concentration inequalities
20 covariates p
21 design
22 distribution
23 empirical application
24 error
25 estimation
26 estimator
27 exponential
28 funds
29 guidance
30 index
31 index tracking funds
32 inequality
33 investors
34 linear model
35 method
36 model
37 n.
38 number
39 numerical simulations
40 paper
41 performance
42 prediction
43 prediction error
44 regression
45 results
46 sample size n.
47 selection
48 selection performance
49 simulations
50 size n.
51 sparse linear models
52 sparse selection
53 sub-exponential distribution
54 target index
55 trends
56 useful guidance
57 variable selection performance
58 schema:name Lasso regression in sparse linear model with φ-mixing errors
59 schema:pagination 1-26
60 schema:productId N24a7e2a78c5c4d5ab683ba2c668721ad
61 N553fc0b41b3842378d9522801a4f47e0
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1145698701
63 https://doi.org/10.1007/s00184-022-00860-7
64 schema:sdDatePublished 2022-12-01T06:44
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N28f473adb07546fb92deaf52910f3e44
67 schema:url https://doi.org/10.1007/s00184-022-00860-7
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N24a7e2a78c5c4d5ab683ba2c668721ad schema:name dimensions_id
72 schema:value pub.1145698701
73 rdf:type schema:PropertyValue
74 N28f473adb07546fb92deaf52910f3e44 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N553fc0b41b3842378d9522801a4f47e0 schema:name doi
77 schema:value 10.1007/s00184-022-00860-7
78 rdf:type schema:PropertyValue
79 N5c1966b8fe0349099e0d95ed5a47145f rdf:first Nad68c740b9d14c6fa861afb676c4de45
80 rdf:rest rdf:nil
81 N6bd91dcc78674554913c689c3845fff2 rdf:first sg:person.013552460547.85
82 rdf:rest N5c1966b8fe0349099e0d95ed5a47145f
83 N7ab7f5e0c7e344a48d476410c4142175 rdf:first Nbf99cb7432594e628b93d548910d409e
84 rdf:rest N6bd91dcc78674554913c689c3845fff2
85 Nad68c740b9d14c6fa861afb676c4de45 schema:affiliation grid-institutes:grid.443526.2
86 schema:familyName Zhong
87 schema:givenName Wenxuan
88 rdf:type schema:Person
89 Nbf99cb7432594e628b93d548910d409e schema:affiliation grid-institutes:None
90 schema:familyName Peng
91 schema:givenName Ling
92 rdf:type schema:Person
93 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
94 schema:name Mathematical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
97 schema:name Statistics
98 rdf:type schema:DefinedTerm
99 sg:grant.8892450 http://pending.schema.org/fundedItem sg:pub.10.1007/s00184-022-00860-7
100 rdf:type schema:MonetaryGrant
101 sg:journal.1041634 schema:issn 0026-1335
102 1435-926X
103 schema:name Metrika
104 schema:publisher Springer Nature
105 rdf:type schema:Periodical
106 sg:person.013552460547.85 schema:affiliation grid-institutes:grid.267139.8
107 schema:familyName Zhu
108 schema:givenName Yan
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013552460547.85
110 rdf:type schema:Person
111 sg:pub.10.1007/978-3-642-05261-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035847642
112 https://doi.org/10.1007/978-3-642-05261-3
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/978-3-642-20192-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039594045
115 https://doi.org/10.1007/978-3-642-20192-9
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s13171-012-0006-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011474422
118 https://doi.org/10.1007/s13171-012-0006-8
119 rdf:type schema:CreativeWork
120 grid-institutes:None schema:alternateName School of Statistics, Jiangxi University of Economics and Finance, 330013, Nanchang, Jiangxi, China
121 schema:name School of Statistics, Jiangxi University of Economics and Finance, 330013, Nanchang, Jiangxi, China
122 rdf:type schema:Organization
123 grid-institutes:grid.267139.8 schema:alternateName College of Science, University of Shanghai for Science and Technology, 200293, Shanghai, China
124 schema:name College of Science, University of Shanghai for Science and Technology, 200293, Shanghai, China
125 rdf:type schema:Organization
126 grid-institutes:grid.443526.2 schema:alternateName School of Statistics and Information, Shanghai University of International Business and Economics, 201600, Shanghai, China
127 schema:name School of Statistics and Information, Shanghai University of International Business and Economics, 201600, Shanghai, China
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...