An extension of the Gumbel–Barnett family of copulas View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-02-17

AUTHORS

Walter Diaz, Carles M. Cuadras

ABSTRACT

The Gumbel–Barnett family of bivariate distributions with given marginals, is frequently used in theory and applications. This family has been generalized in several ways. We propose and study a broad generalization by using two differentiable functions. We obtain some properties and describe particular cases.

PAGES

913-926

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00184-022-00859-0

DOI

http://dx.doi.org/10.1007/s00184-022-00859-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1145663717


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Antioquia, Medell\u00edn, Colombia", 
          "id": "http://www.grid.ac/institutes/grid.412881.6", 
          "name": [
            "University of Antioquia, Medell\u00edn, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Diaz", 
        "givenName": "Walter", 
        "id": "sg:person.01104222164.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104222164.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Barcelona, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5841.8", 
          "name": [
            "University of Barcelona, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cuadras", 
        "givenName": "Carles M.", 
        "id": "sg:person.011162636613.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011162636613.68"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2022-02-17", 
    "datePublishedReg": "2022-02-17", 
    "description": "The Gumbel\u2013Barnett family of bivariate distributions with given marginals, is frequently used in theory and applications. This family has been generalized in several ways. We propose and study a broad generalization by using two differentiable functions. We obtain some properties and describe particular cases.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00184-022-00859-0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041634", 
        "issn": [
          "0026-1335", 
          "1435-926X"
        ], 
        "name": "Metrika", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "85"
      }
    ], 
    "keywords": [
      "differentiable functions", 
      "bivariate distribution", 
      "particular case", 
      "marginals", 
      "generalization", 
      "copula", 
      "theory", 
      "extension", 
      "broad generalizations", 
      "distribution", 
      "properties", 
      "applications", 
      "function", 
      "cases", 
      "family", 
      "way"
    ], 
    "name": "An extension of the Gumbel\u2013Barnett family of copulas", 
    "pagination": "913-926", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1145663717"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00184-022-00859-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00184-022-00859-0", 
      "https://app.dimensions.ai/details/publication/pub.1145663717"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_925.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00184-022-00859-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00859-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00859-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00859-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00859-0'


 

This table displays all metadata directly associated to this object as RDF triples.

83 TRIPLES      20 PREDICATES      40 URIs      32 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00184-022-00859-0 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N8524126823ad422b8278378cddf8d2d0
4 schema:datePublished 2022-02-17
5 schema:datePublishedReg 2022-02-17
6 schema:description The Gumbel–Barnett family of bivariate distributions with given marginals, is frequently used in theory and applications. This family has been generalized in several ways. We propose and study a broad generalization by using two differentiable functions. We obtain some properties and describe particular cases.
7 schema:genre article
8 schema:isAccessibleForFree false
9 schema:isPartOf N2041c3cf48884a65bd147b6b0b9f5104
10 Nf65daf16123a4dbc9f17c0e9e041c5a5
11 sg:journal.1041634
12 schema:keywords applications
13 bivariate distribution
14 broad generalizations
15 cases
16 copula
17 differentiable functions
18 distribution
19 extension
20 family
21 function
22 generalization
23 marginals
24 particular case
25 properties
26 theory
27 way
28 schema:name An extension of the Gumbel–Barnett family of copulas
29 schema:pagination 913-926
30 schema:productId Ncbc1d82bbd984bd79cdc3bafd64ce8d2
31 Nf4825d89cee24488b955a157e64b9cf9
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1145663717
33 https://doi.org/10.1007/s00184-022-00859-0
34 schema:sdDatePublished 2022-10-01T06:49
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nb222ec22f97f44eeb8cca25f962b25fb
37 schema:url https://doi.org/10.1007/s00184-022-00859-0
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N1c67722f604c49a8a93e9f20b6c0a3d0 rdf:first sg:person.011162636613.68
42 rdf:rest rdf:nil
43 N2041c3cf48884a65bd147b6b0b9f5104 schema:volumeNumber 85
44 rdf:type schema:PublicationVolume
45 N8524126823ad422b8278378cddf8d2d0 rdf:first sg:person.01104222164.22
46 rdf:rest N1c67722f604c49a8a93e9f20b6c0a3d0
47 Nb222ec22f97f44eeb8cca25f962b25fb schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 Ncbc1d82bbd984bd79cdc3bafd64ce8d2 schema:name doi
50 schema:value 10.1007/s00184-022-00859-0
51 rdf:type schema:PropertyValue
52 Nf4825d89cee24488b955a157e64b9cf9 schema:name dimensions_id
53 schema:value pub.1145663717
54 rdf:type schema:PropertyValue
55 Nf65daf16123a4dbc9f17c0e9e041c5a5 schema:issueNumber 7
56 rdf:type schema:PublicationIssue
57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
58 schema:name Mathematical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
61 schema:name Pure Mathematics
62 rdf:type schema:DefinedTerm
63 sg:journal.1041634 schema:issn 0026-1335
64 1435-926X
65 schema:name Metrika
66 schema:publisher Springer Nature
67 rdf:type schema:Periodical
68 sg:person.01104222164.22 schema:affiliation grid-institutes:grid.412881.6
69 schema:familyName Diaz
70 schema:givenName Walter
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104222164.22
72 rdf:type schema:Person
73 sg:person.011162636613.68 schema:affiliation grid-institutes:grid.5841.8
74 schema:familyName Cuadras
75 schema:givenName Carles M.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011162636613.68
77 rdf:type schema:Person
78 grid-institutes:grid.412881.6 schema:alternateName University of Antioquia, Medellín, Colombia
79 schema:name University of Antioquia, Medellín, Colombia
80 rdf:type schema:Organization
81 grid-institutes:grid.5841.8 schema:alternateName University of Barcelona, Barcelona, Spain
82 schema:name University of Barcelona, Barcelona, Spain
83 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...