Bayesian estimation for an item response tree model for nonresponse modeling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-03-19

AUTHORS

Yu-Wei Chang, Jyun-Ye Tu

ABSTRACT

Nonresponse data are common in achievement tests or questionnaires. Chang et al. (Br J Math Stat Psychol 74:487–512, 2021) proposed an Item Response tree model, namely TR4, for modeling some potential mechanisms underlying nonresponses so that the estimates of parameters of interest would not be biased due to missing not at random (Rubin in Biometrika 63:581–592, 1976). TR4 has two notable degenerate cases, both with insightful practical meanings. When TR4 is fitted to data originated from some degenerate cases, there exist model identifiability issues so that the existing frequentist inference for the TR4 model is not suitable. In the current study, we propose a Bayesian estimation procedure that incorporates the Markov chain Monte Carlo technique for estimating the TR4 model. We conducted simulation studies to demonstrate the effectiveness of the Bayesian estimation procedure in solving the model unidentifiability issue. In addition, the TR4 model is further extended in the present study to effectively accommodate the complexity underlying some real data. The advantage of the extended models over TR4 is demonstrated in the real data analysis where we apply our method to the data of a geography test for college admission in Taiwan. More... »

PAGES

1-25

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00184-022-00858-1

DOI

http://dx.doi.org/10.1007/s00184-022-00858-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1146415014


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Statistics, National Chengchi University, Taipei, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.412042.1", 
          "name": [
            "Department of Statistics, National Chengchi University, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Yu-Wei", 
        "id": "sg:person.01110053020.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110053020.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Statistics, Feng Chia University, Taichung, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.411298.7", 
          "name": [
            "Department of Statistics, Feng Chia University, Taichung, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tu", 
        "givenName": "Jyun-Ye", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11162-011-9240-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016946923", 
          "https://doi.org/10.1007/s11162-011-9240-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-0742-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007847938", 
          "https://doi.org/10.1007/978-1-4419-0742-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02295598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021092923", 
          "https://doi.org/10.1007/bf02295598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11336-013-9336-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015292829", 
          "https://doi.org/10.1007/s11336-013-9336-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02296133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014480640", 
          "https://doi.org/10.1007/bf02296133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11336-007-9031-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039682959", 
          "https://doi.org/10.1007/s11336-007-9031-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11336-007-9045-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030160869", 
          "https://doi.org/10.1007/s11336-007-9045-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-03-19", 
    "datePublishedReg": "2022-03-19", 
    "description": "Nonresponse data are common in achievement tests or questionnaires. Chang et al. (Br J Math Stat Psychol 74:487\u2013512, 2021) proposed an Item Response tree model, namely TR4, for modeling some potential mechanisms underlying nonresponses so that the estimates of parameters of interest would not be biased due to missing not at random (Rubin in Biometrika 63:581\u2013592, 1976). TR4 has two notable degenerate cases, both with insightful practical meanings. When TR4 is fitted to data originated from some degenerate cases, there exist model identifiability issues so that the existing frequentist inference for the TR4 model is not suitable. In the current study, we propose a Bayesian estimation procedure that incorporates the Markov chain Monte Carlo technique for estimating the TR4 model. We conducted simulation studies to demonstrate the effectiveness of the Bayesian estimation procedure in solving the model unidentifiability issue. In addition, the TR4 model is further extended in the present study to effectively accommodate the complexity underlying some real data. The advantage of the extended models over TR4 is demonstrated in the real data analysis where we apply our method to the data of a geography test for college admission in Taiwan.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00184-022-00858-1", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041634", 
        "issn": [
          "0026-1335", 
          "1435-926X"
        ], 
        "name": "Metrika", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "Bayesian estimation procedure", 
      "degenerate case", 
      "Markov chain Monte Carlo techniques", 
      "estimation procedure", 
      "real data analysis", 
      "item response tree model", 
      "Monte Carlo technique", 
      "model identifiability issues", 
      "estimates of parameters", 
      "frequentist inference", 
      "unidentifiability issues", 
      "Bayesian estimation", 
      "identifiability issues", 
      "Carlo technique", 
      "simulation study", 
      "real data", 
      "extended model", 
      "tree model", 
      "practical meaning", 
      "model", 
      "data analysis", 
      "inference", 
      "estimation", 
      "modeling", 
      "complexity", 
      "parameters", 
      "estimates", 
      "cases", 
      "procedure", 
      "data", 
      "technique", 
      "effectiveness", 
      "advantages", 
      "interest", 
      "analysis", 
      "issues", 
      "nonresponses", 
      "test", 
      "addition", 
      "study", 
      "achievement test", 
      "meaning", 
      "mechanism", 
      "college admissions", 
      "present study", 
      "current study", 
      "Taiwan", 
      "questionnaire", 
      "method", 
      "potential mechanisms", 
      "admission", 
      "TR4", 
      "geography test"
    ], 
    "name": "Bayesian estimation for an item response tree model for nonresponse modeling", 
    "pagination": "1-25", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1146415014"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00184-022-00858-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00184-022-00858-1", 
      "https://app.dimensions.ai/details/publication/pub.1146415014"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_950.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00184-022-00858-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00858-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00858-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00858-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00858-1'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      82 URIs      67 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00184-022-00858-1 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Na16f8b1c8c004d1d8c1fbc3f85ad0083
4 schema:citation sg:pub.10.1007/978-1-4419-0742-4
5 sg:pub.10.1007/bf02295598
6 sg:pub.10.1007/bf02296133
7 sg:pub.10.1007/s11162-011-9240-5
8 sg:pub.10.1007/s11336-007-9031-2
9 sg:pub.10.1007/s11336-007-9045-9
10 sg:pub.10.1007/s11336-013-9336-2
11 schema:datePublished 2022-03-19
12 schema:datePublishedReg 2022-03-19
13 schema:description Nonresponse data are common in achievement tests or questionnaires. Chang et al. (Br J Math Stat Psychol 74:487–512, 2021) proposed an Item Response tree model, namely TR4, for modeling some potential mechanisms underlying nonresponses so that the estimates of parameters of interest would not be biased due to missing not at random (Rubin in Biometrika 63:581–592, 1976). TR4 has two notable degenerate cases, both with insightful practical meanings. When TR4 is fitted to data originated from some degenerate cases, there exist model identifiability issues so that the existing frequentist inference for the TR4 model is not suitable. In the current study, we propose a Bayesian estimation procedure that incorporates the Markov chain Monte Carlo technique for estimating the TR4 model. We conducted simulation studies to demonstrate the effectiveness of the Bayesian estimation procedure in solving the model unidentifiability issue. In addition, the TR4 model is further extended in the present study to effectively accommodate the complexity underlying some real data. The advantage of the extended models over TR4 is demonstrated in the real data analysis where we apply our method to the data of a geography test for college admission in Taiwan.
14 schema:genre article
15 schema:isAccessibleForFree false
16 schema:isPartOf sg:journal.1041634
17 schema:keywords Bayesian estimation
18 Bayesian estimation procedure
19 Carlo technique
20 Markov chain Monte Carlo techniques
21 Monte Carlo technique
22 TR4
23 Taiwan
24 achievement test
25 addition
26 admission
27 advantages
28 analysis
29 cases
30 college admissions
31 complexity
32 current study
33 data
34 data analysis
35 degenerate case
36 effectiveness
37 estimates
38 estimates of parameters
39 estimation
40 estimation procedure
41 extended model
42 frequentist inference
43 geography test
44 identifiability issues
45 inference
46 interest
47 issues
48 item response tree model
49 meaning
50 mechanism
51 method
52 model
53 model identifiability issues
54 modeling
55 nonresponses
56 parameters
57 potential mechanisms
58 practical meaning
59 present study
60 procedure
61 questionnaire
62 real data
63 real data analysis
64 simulation study
65 study
66 technique
67 test
68 tree model
69 unidentifiability issues
70 schema:name Bayesian estimation for an item response tree model for nonresponse modeling
71 schema:pagination 1-25
72 schema:productId N9d12d2915e3948f3b65f795ffcf08104
73 Ne43af64abda04cdebf3aea85e3c4467e
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1146415014
75 https://doi.org/10.1007/s00184-022-00858-1
76 schema:sdDatePublished 2022-09-02T16:08
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N4a8a15134d194e5dbe492ead8946deaf
79 schema:url https://doi.org/10.1007/s00184-022-00858-1
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N4a8a15134d194e5dbe492ead8946deaf schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N775db4035bbe465a840b6b98489a6f51 rdf:first Nf474d41c09e54d729024201ca398fd01
86 rdf:rest rdf:nil
87 N9d12d2915e3948f3b65f795ffcf08104 schema:name doi
88 schema:value 10.1007/s00184-022-00858-1
89 rdf:type schema:PropertyValue
90 Na16f8b1c8c004d1d8c1fbc3f85ad0083 rdf:first sg:person.01110053020.53
91 rdf:rest N775db4035bbe465a840b6b98489a6f51
92 Ne43af64abda04cdebf3aea85e3c4467e schema:name dimensions_id
93 schema:value pub.1146415014
94 rdf:type schema:PropertyValue
95 Nf474d41c09e54d729024201ca398fd01 schema:affiliation grid-institutes:grid.411298.7
96 schema:familyName Tu
97 schema:givenName Jyun-Ye
98 rdf:type schema:Person
99 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
100 schema:name Mathematical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
103 schema:name Statistics
104 rdf:type schema:DefinedTerm
105 sg:journal.1041634 schema:issn 0026-1335
106 1435-926X
107 schema:name Metrika
108 schema:publisher Springer Nature
109 rdf:type schema:Periodical
110 sg:person.01110053020.53 schema:affiliation grid-institutes:grid.412042.1
111 schema:familyName Chang
112 schema:givenName Yu-Wei
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110053020.53
114 rdf:type schema:Person
115 sg:pub.10.1007/978-1-4419-0742-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007847938
116 https://doi.org/10.1007/978-1-4419-0742-4
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bf02295598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021092923
119 https://doi.org/10.1007/bf02295598
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/bf02296133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014480640
122 https://doi.org/10.1007/bf02296133
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s11162-011-9240-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016946923
125 https://doi.org/10.1007/s11162-011-9240-5
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s11336-007-9031-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039682959
128 https://doi.org/10.1007/s11336-007-9031-2
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s11336-007-9045-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030160869
131 https://doi.org/10.1007/s11336-007-9045-9
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s11336-013-9336-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015292829
134 https://doi.org/10.1007/s11336-013-9336-2
135 rdf:type schema:CreativeWork
136 grid-institutes:grid.411298.7 schema:alternateName Department of Statistics, Feng Chia University, Taichung, Taiwan
137 schema:name Department of Statistics, Feng Chia University, Taichung, Taiwan
138 rdf:type schema:Organization
139 grid-institutes:grid.412042.1 schema:alternateName Department of Statistics, National Chengchi University, Taipei, Taiwan
140 schema:name Department of Statistics, National Chengchi University, Taipei, Taiwan
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...