Bayesian estimation for an item response tree model for nonresponse modeling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-03-19

AUTHORS

Yu-Wei Chang, Jyun-Ye Tu

ABSTRACT

Nonresponse data are common in achievement tests or questionnaires. Chang et al. (Br J Math Stat Psychol 74:487–512, 2021) proposed an Item Response tree model, namely TR4, for modeling some potential mechanisms underlying nonresponses so that the estimates of parameters of interest would not be biased due to missing not at random (Rubin in Biometrika 63:581–592, 1976). TR4 has two notable degenerate cases, both with insightful practical meanings. When TR4 is fitted to data originated from some degenerate cases, there exist model identifiability issues so that the existing frequentist inference for the TR4 model is not suitable. In the current study, we propose a Bayesian estimation procedure that incorporates the Markov chain Monte Carlo technique for estimating the TR4 model. We conducted simulation studies to demonstrate the effectiveness of the Bayesian estimation procedure in solving the model unidentifiability issue. In addition, the TR4 model is further extended in the present study to effectively accommodate the complexity underlying some real data. The advantage of the extended models over TR4 is demonstrated in the real data analysis where we apply our method to the data of a geography test for college admission in Taiwan. More... »

PAGES

1023-1047

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00184-022-00858-1

DOI

http://dx.doi.org/10.1007/s00184-022-00858-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1146415014


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Statistics, National Chengchi University, Taipei, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.412042.1", 
          "name": [
            "Department of Statistics, National Chengchi University, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Yu-Wei", 
        "id": "sg:person.01110053020.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110053020.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Statistics, Feng Chia University, Taichung, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.411298.7", 
          "name": [
            "Department of Statistics, Feng Chia University, Taichung, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tu", 
        "givenName": "Jyun-Ye", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11336-013-9336-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015292829", 
          "https://doi.org/10.1007/s11336-013-9336-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-0742-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007847938", 
          "https://doi.org/10.1007/978-1-4419-0742-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11336-007-9031-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039682959", 
          "https://doi.org/10.1007/s11336-007-9031-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11336-007-9045-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030160869", 
          "https://doi.org/10.1007/s11336-007-9045-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02296133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014480640", 
          "https://doi.org/10.1007/bf02296133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02295598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021092923", 
          "https://doi.org/10.1007/bf02295598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11162-011-9240-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016946923", 
          "https://doi.org/10.1007/s11162-011-9240-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-03-19", 
    "datePublishedReg": "2022-03-19", 
    "description": "Nonresponse data are common in achievement tests or questionnaires. Chang et al. (Br J Math Stat Psychol 74:487\u2013512, 2021) proposed an Item Response tree model, namely TR4, for modeling some potential mechanisms underlying nonresponses so that the estimates of parameters of interest would not be biased due to missing not at random (Rubin in Biometrika 63:581\u2013592, 1976). TR4 has two notable degenerate cases, both with insightful practical meanings. When TR4 is fitted to data originated from some degenerate cases, there exist model identifiability issues so that the existing frequentist inference for the TR4 model is not suitable. In the current study, we propose a Bayesian estimation procedure that incorporates the Markov chain Monte Carlo technique for estimating the TR4 model. We conducted simulation studies to demonstrate the effectiveness of the Bayesian estimation procedure in solving the model unidentifiability issue. In addition, the TR4 model is further extended in the present study to effectively accommodate the complexity underlying some real data. The advantage of the extended models over TR4 is demonstrated in the real data analysis where we apply our method to the data of a geography test for college admission in Taiwan.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00184-022-00858-1", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041634", 
        "issn": [
          "0026-1335", 
          "1435-926X"
        ], 
        "name": "Metrika", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "85"
      }
    ], 
    "keywords": [
      "Bayesian estimation procedure", 
      "degenerate case", 
      "Markov chain Monte Carlo techniques", 
      "estimation procedure", 
      "real data analysis", 
      "item response tree model", 
      "Monte Carlo technique", 
      "model identifiability issues", 
      "estimates of parameters", 
      "frequentist inference", 
      "unidentifiability issues", 
      "Bayesian estimation", 
      "identifiability issues", 
      "Carlo technique", 
      "simulation study", 
      "real data", 
      "extended model", 
      "tree model", 
      "practical meaning", 
      "model", 
      "data analysis", 
      "inference", 
      "estimation", 
      "modeling", 
      "complexity", 
      "parameters", 
      "estimates", 
      "cases", 
      "procedure", 
      "data", 
      "technique", 
      "effectiveness", 
      "advantages", 
      "interest", 
      "analysis", 
      "issues", 
      "nonresponses", 
      "test", 
      "addition", 
      "study", 
      "achievement test", 
      "meaning", 
      "mechanism", 
      "college admissions", 
      "present study", 
      "current study", 
      "Taiwan", 
      "questionnaire", 
      "method", 
      "potential mechanisms", 
      "admission", 
      "TR4", 
      "geography test"
    ], 
    "name": "Bayesian estimation for an item response tree model for nonresponse modeling", 
    "pagination": "1023-1047", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1146415014"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00184-022-00858-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00184-022-00858-1", 
      "https://app.dimensions.ai/details/publication/pub.1146415014"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_931.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00184-022-00858-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00858-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00858-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00858-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00184-022-00858-1'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      84 URIs      69 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00184-022-00858-1 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N2951c80a26df4731bdc9685ad14faeba
4 schema:citation sg:pub.10.1007/978-1-4419-0742-4
5 sg:pub.10.1007/bf02295598
6 sg:pub.10.1007/bf02296133
7 sg:pub.10.1007/s11162-011-9240-5
8 sg:pub.10.1007/s11336-007-9031-2
9 sg:pub.10.1007/s11336-007-9045-9
10 sg:pub.10.1007/s11336-013-9336-2
11 schema:datePublished 2022-03-19
12 schema:datePublishedReg 2022-03-19
13 schema:description Nonresponse data are common in achievement tests or questionnaires. Chang et al. (Br J Math Stat Psychol 74:487–512, 2021) proposed an Item Response tree model, namely TR4, for modeling some potential mechanisms underlying nonresponses so that the estimates of parameters of interest would not be biased due to missing not at random (Rubin in Biometrika 63:581–592, 1976). TR4 has two notable degenerate cases, both with insightful practical meanings. When TR4 is fitted to data originated from some degenerate cases, there exist model identifiability issues so that the existing frequentist inference for the TR4 model is not suitable. In the current study, we propose a Bayesian estimation procedure that incorporates the Markov chain Monte Carlo technique for estimating the TR4 model. We conducted simulation studies to demonstrate the effectiveness of the Bayesian estimation procedure in solving the model unidentifiability issue. In addition, the TR4 model is further extended in the present study to effectively accommodate the complexity underlying some real data. The advantage of the extended models over TR4 is demonstrated in the real data analysis where we apply our method to the data of a geography test for college admission in Taiwan.
14 schema:genre article
15 schema:isAccessibleForFree false
16 schema:isPartOf N80ad4eca91d6490186ff96356d9bcad9
17 Ne18e0d33d1cc46768059fb7dbe7e6e49
18 sg:journal.1041634
19 schema:keywords Bayesian estimation
20 Bayesian estimation procedure
21 Carlo technique
22 Markov chain Monte Carlo techniques
23 Monte Carlo technique
24 TR4
25 Taiwan
26 achievement test
27 addition
28 admission
29 advantages
30 analysis
31 cases
32 college admissions
33 complexity
34 current study
35 data
36 data analysis
37 degenerate case
38 effectiveness
39 estimates
40 estimates of parameters
41 estimation
42 estimation procedure
43 extended model
44 frequentist inference
45 geography test
46 identifiability issues
47 inference
48 interest
49 issues
50 item response tree model
51 meaning
52 mechanism
53 method
54 model
55 model identifiability issues
56 modeling
57 nonresponses
58 parameters
59 potential mechanisms
60 practical meaning
61 present study
62 procedure
63 questionnaire
64 real data
65 real data analysis
66 simulation study
67 study
68 technique
69 test
70 tree model
71 unidentifiability issues
72 schema:name Bayesian estimation for an item response tree model for nonresponse modeling
73 schema:pagination 1023-1047
74 schema:productId N73d6247f804c4ec6b644bb4107ee7702
75 Ne9498cf78851415c9cc129f030dff463
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1146415014
77 https://doi.org/10.1007/s00184-022-00858-1
78 schema:sdDatePublished 2022-11-24T21:09
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N2ba7d190016045d092aabc82c33ad993
81 schema:url https://doi.org/10.1007/s00184-022-00858-1
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N2951c80a26df4731bdc9685ad14faeba rdf:first sg:person.01110053020.53
86 rdf:rest N8d99ac7438ee47fe9965727c3b9bf4af
87 N2ba7d190016045d092aabc82c33ad993 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N73d6247f804c4ec6b644bb4107ee7702 schema:name doi
90 schema:value 10.1007/s00184-022-00858-1
91 rdf:type schema:PropertyValue
92 N80ad4eca91d6490186ff96356d9bcad9 schema:issueNumber 8
93 rdf:type schema:PublicationIssue
94 N8d99ac7438ee47fe9965727c3b9bf4af rdf:first Nefbcc6216ca746eca570347315368145
95 rdf:rest rdf:nil
96 Ne18e0d33d1cc46768059fb7dbe7e6e49 schema:volumeNumber 85
97 rdf:type schema:PublicationVolume
98 Ne9498cf78851415c9cc129f030dff463 schema:name dimensions_id
99 schema:value pub.1146415014
100 rdf:type schema:PropertyValue
101 Nefbcc6216ca746eca570347315368145 schema:affiliation grid-institutes:grid.411298.7
102 schema:familyName Tu
103 schema:givenName Jyun-Ye
104 rdf:type schema:Person
105 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
106 schema:name Mathematical Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
109 schema:name Statistics
110 rdf:type schema:DefinedTerm
111 sg:journal.1041634 schema:issn 0026-1335
112 1435-926X
113 schema:name Metrika
114 schema:publisher Springer Nature
115 rdf:type schema:Periodical
116 sg:person.01110053020.53 schema:affiliation grid-institutes:grid.412042.1
117 schema:familyName Chang
118 schema:givenName Yu-Wei
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110053020.53
120 rdf:type schema:Person
121 sg:pub.10.1007/978-1-4419-0742-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007847938
122 https://doi.org/10.1007/978-1-4419-0742-4
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf02295598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021092923
125 https://doi.org/10.1007/bf02295598
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/bf02296133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014480640
128 https://doi.org/10.1007/bf02296133
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s11162-011-9240-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016946923
131 https://doi.org/10.1007/s11162-011-9240-5
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s11336-007-9031-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039682959
134 https://doi.org/10.1007/s11336-007-9031-2
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s11336-007-9045-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030160869
137 https://doi.org/10.1007/s11336-007-9045-9
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s11336-013-9336-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015292829
140 https://doi.org/10.1007/s11336-013-9336-2
141 rdf:type schema:CreativeWork
142 grid-institutes:grid.411298.7 schema:alternateName Department of Statistics, Feng Chia University, Taichung, Taiwan
143 schema:name Department of Statistics, Feng Chia University, Taichung, Taiwan
144 rdf:type schema:Organization
145 grid-institutes:grid.412042.1 schema:alternateName Department of Statistics, National Chengchi University, Taipei, Taiwan
146 schema:name Department of Statistics, National Chengchi University, Taipei, Taiwan
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...