Statistical analysis of the non-ergodic fractional Ornstein–Uhlenbeck process with periodic mean View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-01-24

AUTHORS

Rachid Belfadli, Khalifa Es-Sebaiy, Fatima-Ezzahra Farah

ABSTRACT

Consider a periodic, mean-reverting Ornstein–Uhlenbeck process X={Xt,t≥0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=\{X_t,t\ge 0\}$$\end{document} of the form dXt=L(t)+αXtdt+dBtH,t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d X_{t}=\left( L(t)+\alpha X_{t}\right) d t+ dB^H_{t}, \quad t \ge 0$$\end{document}, where L(t)=∑i=1pμiϕi(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(t)=\sum _{i=1}^{p}\mu _i\phi _i (t)$$\end{document} is a periodic parametric function, and {BtH,t≥0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{B^H_t,t\ge 0\}$$\end{document} is a fractional Brownian motion of Hurst parameter 12≤H<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}\le H<1$$\end{document}. In the “ergodic” case α<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <0$$\end{document}, the parametric estimation of (μ1,…,μp,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu _1,\ldots ,\mu _p,\alpha )$$\end{document} based on continuous-time observation of X has been considered in Dehling et al. (Stat Inference Stoch Process 13:175–192, 2010; Stat Inference Stoch Process 20:1–14, 2016) for H=12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=\frac{1}{2}$$\end{document}, and 120\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}, and for all 12≤H<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}\le H<1$$\end{document}. We analyze the strong consistency and the asymptotic distribution for the estimator of (μ1,…,μp,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu _1,\ldots ,\mu _p,\alpha )$$\end{document} when the whole trajectory of X is observed. More... »

PAGES

885-911

References to SciGraph publications

  • 2004. Statistical Inference for Ergodic Diffusion Processes in NONE
  • 2020-07-01. Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model in STATISTICAL METHODS & APPLICATIONS
  • 2012. Selected Aspects of Fractional Brownian Motion in NONE
  • 2019-06-13. Least Squares Type Estimation for Discretely Observed Non-Ergodic Gaussian Ornstein-Uhlenbeck Processes in ACTA MATHEMATICA SCIENTIA
  • 2010-10-10. Drift estimation for a periodic mean reversion process in STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES
  • 1983. Asymptotic Optimal Inference for Non-ergodic Models in NONE
  • 2017-11-12. Parameter estimation for fractional Ornstein–Uhlenbeck processes of general Hurst parameter in STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES
  • 2010-07-21. Affine fractional stochastic volatility models in ANNALS OF FINANCE
  • 2001. Statistics of Random Processes, II. Applications in NONE
  • 2019-06-19. Parameter estimation for the Rosenblatt Ornstein–Uhlenbeck process with periodic mean in STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES
  • 2020-05-21. Comparison of the LS-based estimators and the MLE for the fractional Ornstein–Uhlenbeck process in STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES
  • 2013-01-09. Parameter Estimation for α-Fractional Bridges in MALLIAVIN CALCULUS AND STOCHASTIC ANALYSIS
  • 2002-10. Statistical Analysis of the Fractional Ornstein–Uhlenbeck Type Process in STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES
  • 2016-05-05. Estimating drift parameters in a fractional Ornstein Uhlenbeck process with periodic mean in STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES
  • 2017-01-24. Parameter estimation for the Langevin equation with stationary-increment Gaussian noise in STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES
  • 2017-12. Least squares estimator of fractional Ornstein–Uhlenbeck processes with periodic mean in JOURNAL OF THE KOREAN STATISTICAL SOCIETY
  • 1936. An inequality of the Hölder type, connected with Stieltjes integration in ACTA MATHEMATICA
  • 2016-09. Least squares estimator for non-ergodic Ornstein–Uhlenbeck processes driven by Gaussian processes in JOURNAL OF THE KOREAN STATISTICAL SOCIETY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00184-021-00854-x

    DOI

    http://dx.doi.org/10.1007/s00184-021-00854-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1144929233


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Research Group of Geometry, Stochastic Analysis and Applications, Department of Mathematics, Faculty of Sciences and Techniques, Cadi Ayyad University, Marrakech, Morocco", 
              "id": "http://www.grid.ac/institutes/grid.411840.8", 
              "name": [
                "Research Group of Geometry, Stochastic Analysis and Applications, Department of Mathematics, Faculty of Sciences and Techniques, Cadi Ayyad University, Marrakech, Morocco"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Belfadli", 
            "givenName": "Rachid", 
            "id": "sg:person.012526561125.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012526561125.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Faculty of Science, Kuwait University, Kuwait, Kuwait", 
              "id": "http://www.grid.ac/institutes/grid.411196.a", 
              "name": [
                "Department of Mathematics, Faculty of Science, Kuwait University, Kuwait, Kuwait"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Es-Sebaiy", 
            "givenName": "Khalifa", 
            "id": "sg:person.011467352261.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011467352261.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National School of Applied Sciences-Marrakech, Cadi Ayyad University, Marrakech, Morocco", 
              "id": "http://www.grid.ac/institutes/grid.411840.8", 
              "name": [
                "National School of Applied Sciences-Marrakech, Cadi Ayyad University, Marrakech, Morocco"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Farah", 
            "givenName": "Fatima-Ezzahra", 
            "id": "sg:person.015267421417.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015267421417.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11203-017-9168-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092648600", 
              "https://doi.org/10.1007/s11203-017-9168-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.jkss.2015.12.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052438455", 
              "https://doi.org/10.1016/j.jkss.2015.12.001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.jkss.2017.06.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090325909", 
              "https://doi.org/10.1016/j.jkss.2017.06.002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4614-5906-4_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027795941", 
              "https://doi.org/10.1007/978-1-4614-5906-4_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4471-3866-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052034478", 
              "https://doi.org/10.1007/978-1-4471-3866-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1021220818545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029049334", 
              "https://doi.org/10.1023/a:1021220818545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-5505-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014581405", 
              "https://doi.org/10.1007/978-1-4612-5505-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11203-020-09215-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127792507", 
              "https://doi.org/10.1007/s11203-020-09215-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-10028-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002934071", 
              "https://doi.org/10.1007/978-3-662-10028-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-88-470-2823-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049521524", 
              "https://doi.org/10.1007/978-88-470-2823-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10436-010-0165-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013228229", 
              "https://doi.org/10.1007/s10436-010-0165-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02401743", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039822348", 
              "https://doi.org/10.1007/bf02401743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11203-016-9136-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007797707", 
              "https://doi.org/10.1007/s11203-016-9136-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10473-019-0406-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1115988661", 
              "https://doi.org/10.1007/s10473-019-0406-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10260-020-00528-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128915974", 
              "https://doi.org/10.1007/s10260-020-00528-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11203-017-9156-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074208251", 
              "https://doi.org/10.1007/s11203-017-9156-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11203-010-9045-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036548748", 
              "https://doi.org/10.1007/s11203-010-9045-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11203-019-09200-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117341722", 
              "https://doi.org/10.1007/s11203-019-09200-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-01-24", 
        "datePublishedReg": "2022-01-24", 
        "description": "Consider a periodic, mean-reverting Ornstein\u2013Uhlenbeck process X={Xt,t\u22650}\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$X=\\{X_t,t\\ge 0\\}$$\\end{document} of the form dXt=L(t)+\u03b1Xtdt+dBtH,t\u22650\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$d X_{t}=\\left( L(t)+\\alpha X_{t}\\right) d t+ dB^H_{t}, \\quad t \\ge 0$$\\end{document}, where L(t)=\u2211i=1p\u03bci\u03d5i(t)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$L(t)=\\sum _{i=1}^{p}\\mu _i\\phi _i (t)$$\\end{document} is a periodic parametric function, and {BtH,t\u22650}\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\{B^H_t,t\\ge 0\\}$$\\end{document} is a fractional Brownian motion of Hurst parameter 12\u2264H<1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\frac{1}{2}\\le H<1$$\\end{document}. In the \u201cergodic\u201d case \u03b1<0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha <0$$\\end{document}, the parametric estimation of (\u03bc1,\u2026,\u03bcp,\u03b1)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(\\mu _1,\\ldots ,\\mu _p,\\alpha )$$\\end{document} based on continuous-time observation of X has been considered in Dehling et al. (Stat Inference Stoch Process 13:175\u2013192, 2010; Stat Inference Stoch Process 20:1\u201314, 2016) for H=12\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H=\\frac{1}{2}$$\\end{document}, and 120\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha >0$$\\end{document}, and for all 12\u2264H<1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\frac{1}{2}\\le H<1$$\\end{document}. We analyze the strong consistency and the asymptotic distribution for the estimator of (\u03bc1,\u2026,\u03bcp,\u03b1)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(\\mu _1,\\ldots ,\\mu _p,\\alpha )$$\\end{document} when the whole trajectory of X is observed.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00184-021-00854-x", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1041634", 
            "issn": [
              "0026-1335", 
              "1435-926X"
            ], 
            "name": "Metrika", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "85"
          }
        ], 
        "keywords": [
          "statistical analysis", 
          "cases", 
          "function", 
          "analysis", 
          "consistency", 
          "observations", 
          "means", 
          "form", 
          "et al", 
          "process", 
          "parameters", 
          "distribution", 
          "BTH", 
          "motion", 
          "trajectories", 
          "whole trajectory", 
          "estimation", 
          "al", 
          "mean-reverting Ornstein\u2013Uhlenbeck process", 
          "strong consistency", 
          "parametric functions", 
          "paper", 
          "fractional Brownian motion", 
          "Brownian motion", 
          "estimator", 
          "parametric estimation", 
          "Hurst parameter", 
          "Ornstein-Uhlenbeck process", 
          "asymptotic distribution", 
          "fractional Ornstein\u2013Uhlenbeck process", 
          "periodic mean", 
          "continuous time observations"
        ], 
        "name": "Statistical analysis of the non-ergodic fractional Ornstein\u2013Uhlenbeck process with periodic mean", 
        "pagination": "885-911", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1144929233"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00184-021-00854-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00184-021-00854-x", 
          "https://app.dimensions.ai/details/publication/pub.1144929233"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_942.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00184-021-00854-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00184-021-00854-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00184-021-00854-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00184-021-00854-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00184-021-00854-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    180 TRIPLES      21 PREDICATES      74 URIs      48 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00184-021-00854-x schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author Nb08ec9d23f704843b0a5d9896b15964e
    4 schema:citation sg:pub.10.1007/978-1-4471-3866-2
    5 sg:pub.10.1007/978-1-4612-5505-5
    6 sg:pub.10.1007/978-1-4614-5906-4_17
    7 sg:pub.10.1007/978-3-662-10028-8
    8 sg:pub.10.1007/978-88-470-2823-4
    9 sg:pub.10.1007/bf02401743
    10 sg:pub.10.1007/s10260-020-00528-4
    11 sg:pub.10.1007/s10436-010-0165-3
    12 sg:pub.10.1007/s10473-019-0406-0
    13 sg:pub.10.1007/s11203-010-9045-8
    14 sg:pub.10.1007/s11203-016-9136-2
    15 sg:pub.10.1007/s11203-017-9156-6
    16 sg:pub.10.1007/s11203-017-9168-2
    17 sg:pub.10.1007/s11203-019-09200-5
    18 sg:pub.10.1007/s11203-020-09215-3
    19 sg:pub.10.1016/j.jkss.2015.12.001
    20 sg:pub.10.1016/j.jkss.2017.06.002
    21 sg:pub.10.1023/a:1021220818545
    22 schema:datePublished 2022-01-24
    23 schema:datePublishedReg 2022-01-24
    24 schema:description Consider a periodic, mean-reverting Ornstein–Uhlenbeck process X={Xt,t≥0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=\{X_t,t\ge 0\}$$\end{document} of the form dXt=L(t)+αXtdt+dBtH,t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d X_{t}=\left( L(t)+\alpha X_{t}\right) d t+ dB^H_{t}, \quad t \ge 0$$\end{document}, where L(t)=∑i=1pμiϕi(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(t)=\sum _{i=1}^{p}\mu _i\phi _i (t)$$\end{document} is a periodic parametric function, and {BtH,t≥0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{B^H_t,t\ge 0\}$$\end{document} is a fractional Brownian motion of Hurst parameter 12≤H<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}\le H<1$$\end{document}. In the “ergodic” case α<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <0$$\end{document}, the parametric estimation of (μ1,…,μp,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu _1,\ldots ,\mu _p,\alpha )$$\end{document} based on continuous-time observation of X has been considered in Dehling et al. (Stat Inference Stoch Process 13:175–192, 2010; Stat Inference Stoch Process 20:1–14, 2016) for H=12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=\frac{1}{2}$$\end{document}, and 12<H<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}<H<1$$\end{document}, respectively. In this paper we consider the “non-ergodic” case α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}, and for all 12≤H<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}\le H<1$$\end{document}. We analyze the strong consistency and the asymptotic distribution for the estimator of (μ1,…,μp,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu _1,\ldots ,\mu _p,\alpha )$$\end{document} when the whole trajectory of X is observed.
    25 schema:genre article
    26 schema:isAccessibleForFree true
    27 schema:isPartOf Nb94da8a98ce648d193018b2b1f9fb82b
    28 Nf514c4153c134f1bb8ba09023ae2a7e5
    29 sg:journal.1041634
    30 schema:keywords BTH
    31 Brownian motion
    32 Hurst parameter
    33 Ornstein-Uhlenbeck process
    34 al
    35 analysis
    36 asymptotic distribution
    37 cases
    38 consistency
    39 continuous time observations
    40 distribution
    41 estimation
    42 estimator
    43 et al
    44 form
    45 fractional Brownian motion
    46 fractional Ornstein–Uhlenbeck process
    47 function
    48 mean-reverting Ornstein–Uhlenbeck process
    49 means
    50 motion
    51 observations
    52 paper
    53 parameters
    54 parametric estimation
    55 parametric functions
    56 periodic mean
    57 process
    58 statistical analysis
    59 strong consistency
    60 trajectories
    61 whole trajectory
    62 schema:name Statistical analysis of the non-ergodic fractional Ornstein–Uhlenbeck process with periodic mean
    63 schema:pagination 885-911
    64 schema:productId Nad12794a7f4f4a3f8f0566ecb7d27ab0
    65 Neaa343792f2241f18f0a50319a3e62c6
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1144929233
    67 https://doi.org/10.1007/s00184-021-00854-x
    68 schema:sdDatePublished 2022-10-01T06:50
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher Nd28ae2135cbf44f1bb28f461c44783c9
    71 schema:url https://doi.org/10.1007/s00184-021-00854-x
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N446064bd482f47e098435f9996143613 rdf:first sg:person.011467352261.95
    76 rdf:rest Nfb5b4a88adad43e1ab8af7850b082a80
    77 Nad12794a7f4f4a3f8f0566ecb7d27ab0 schema:name doi
    78 schema:value 10.1007/s00184-021-00854-x
    79 rdf:type schema:PropertyValue
    80 Nb08ec9d23f704843b0a5d9896b15964e rdf:first sg:person.012526561125.09
    81 rdf:rest N446064bd482f47e098435f9996143613
    82 Nb94da8a98ce648d193018b2b1f9fb82b schema:volumeNumber 85
    83 rdf:type schema:PublicationVolume
    84 Nd28ae2135cbf44f1bb28f461c44783c9 schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 Neaa343792f2241f18f0a50319a3e62c6 schema:name dimensions_id
    87 schema:value pub.1144929233
    88 rdf:type schema:PropertyValue
    89 Nf514c4153c134f1bb8ba09023ae2a7e5 schema:issueNumber 7
    90 rdf:type schema:PublicationIssue
    91 Nfb5b4a88adad43e1ab8af7850b082a80 rdf:first sg:person.015267421417.49
    92 rdf:rest rdf:nil
    93 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Mathematical Sciences
    95 rdf:type schema:DefinedTerm
    96 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Statistics
    98 rdf:type schema:DefinedTerm
    99 sg:journal.1041634 schema:issn 0026-1335
    100 1435-926X
    101 schema:name Metrika
    102 schema:publisher Springer Nature
    103 rdf:type schema:Periodical
    104 sg:person.011467352261.95 schema:affiliation grid-institutes:grid.411196.a
    105 schema:familyName Es-Sebaiy
    106 schema:givenName Khalifa
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011467352261.95
    108 rdf:type schema:Person
    109 sg:person.012526561125.09 schema:affiliation grid-institutes:grid.411840.8
    110 schema:familyName Belfadli
    111 schema:givenName Rachid
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012526561125.09
    113 rdf:type schema:Person
    114 sg:person.015267421417.49 schema:affiliation grid-institutes:grid.411840.8
    115 schema:familyName Farah
    116 schema:givenName Fatima-Ezzahra
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015267421417.49
    118 rdf:type schema:Person
    119 sg:pub.10.1007/978-1-4471-3866-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052034478
    120 https://doi.org/10.1007/978-1-4471-3866-2
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/978-1-4612-5505-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014581405
    123 https://doi.org/10.1007/978-1-4612-5505-5
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/978-1-4614-5906-4_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027795941
    126 https://doi.org/10.1007/978-1-4614-5906-4_17
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/978-3-662-10028-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002934071
    129 https://doi.org/10.1007/978-3-662-10028-8
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/978-88-470-2823-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049521524
    132 https://doi.org/10.1007/978-88-470-2823-4
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/bf02401743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039822348
    135 https://doi.org/10.1007/bf02401743
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s10260-020-00528-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128915974
    138 https://doi.org/10.1007/s10260-020-00528-4
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s10436-010-0165-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013228229
    141 https://doi.org/10.1007/s10436-010-0165-3
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s10473-019-0406-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1115988661
    144 https://doi.org/10.1007/s10473-019-0406-0
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s11203-010-9045-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036548748
    147 https://doi.org/10.1007/s11203-010-9045-8
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s11203-016-9136-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007797707
    150 https://doi.org/10.1007/s11203-016-9136-2
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s11203-017-9156-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074208251
    153 https://doi.org/10.1007/s11203-017-9156-6
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s11203-017-9168-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092648600
    156 https://doi.org/10.1007/s11203-017-9168-2
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s11203-019-09200-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117341722
    159 https://doi.org/10.1007/s11203-019-09200-5
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s11203-020-09215-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127792507
    162 https://doi.org/10.1007/s11203-020-09215-3
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1016/j.jkss.2015.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052438455
    165 https://doi.org/10.1016/j.jkss.2015.12.001
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1016/j.jkss.2017.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090325909
    168 https://doi.org/10.1016/j.jkss.2017.06.002
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1023/a:1021220818545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029049334
    171 https://doi.org/10.1023/a:1021220818545
    172 rdf:type schema:CreativeWork
    173 grid-institutes:grid.411196.a schema:alternateName Department of Mathematics, Faculty of Science, Kuwait University, Kuwait, Kuwait
    174 schema:name Department of Mathematics, Faculty of Science, Kuwait University, Kuwait, Kuwait
    175 rdf:type schema:Organization
    176 grid-institutes:grid.411840.8 schema:alternateName National School of Applied Sciences-Marrakech, Cadi Ayyad University, Marrakech, Morocco
    177 Research Group of Geometry, Stochastic Analysis and Applications, Department of Mathematics, Faculty of Sciences and Techniques, Cadi Ayyad University, Marrakech, Morocco
    178 schema:name National School of Applied Sciences-Marrakech, Cadi Ayyad University, Marrakech, Morocco
    179 Research Group of Geometry, Stochastic Analysis and Applications, Department of Mathematics, Faculty of Sciences and Techniques, Cadi Ayyad University, Marrakech, Morocco
    180 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...