The number of failed components in a coherent working system when the lifetimes are discretely distributed View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-04-19

AUTHORS

Krzysztof Jasiński

ABSTRACT

In this paper, we study the number of failed components of a coherent system. We consider the case when the component lifetimes are discrete random variables that may be dependent and non-identically distributed. Firstly, we compute the probability that there are exactly i, i=0,…,n-k,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=0,\ldots ,n-k,$$\end{document} failures in a k-out-of-n system under the condition that it is operating at time t. Next, we extend this result to other coherent systems. In addition, we show that, in the most popular model of independent and identically distributed component lifetimes, the obtained probability corresponds to the respective one derived in the continuous case and existing in the literature. More... »

PAGES

1081-1094

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00184-021-00817-2

DOI

http://dx.doi.org/10.1007/s00184-021-00817-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1137308819


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100, Torun, Poland", 
          "id": "http://www.grid.ac/institutes/grid.5374.5", 
          "name": [
            "Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100, Torun, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jasi\u0144ski", 
        "givenName": "Krzysztof", 
        "id": "sg:person.015436211670.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015436211670.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11749-017-0535-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085128170", 
          "https://doi.org/10.1007/s11749-017-0535-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00362-014-0632-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048519769", 
          "https://doi.org/10.1007/s00362-014-0632-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00362-016-0850-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054515191", 
          "https://doi.org/10.1007/s00362-016-0850-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11749-020-00724-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1129018531", 
          "https://doi.org/10.1007/s11749-020-00724-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-04-19", 
    "datePublishedReg": "2021-04-19", 
    "description": "In this paper, we study the number of failed components of a coherent system. We consider the case when the component lifetimes are discrete random variables that may be dependent and non-identically distributed. Firstly, we compute the probability that there are exactly i, i=0,\u2026,n-k,\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$i=0,\\ldots ,n-k,$$\\end{document} failures in a k-out-of-n system under the condition that it is operating at time t. Next, we extend this result to other coherent systems. In addition, we show that, in the most popular model of independent and identically distributed component lifetimes, the obtained probability corresponds to the respective one derived in the continuous case and existing in the literature.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00184-021-00817-2", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1041634", 
        "issn": [
          "0026-1335", 
          "1435-926X"
        ], 
        "name": "Metrika", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "84"
      }
    ], 
    "keywords": [
      "working system", 
      "coherent system", 
      "system", 
      "discrete random variables", 
      "popular models", 
      "continuous case", 
      "number", 
      "components", 
      "component lifetimes", 
      "lifetime", 
      "random variables", 
      "probability", 
      "model", 
      "probability corresponds", 
      "cases", 
      "N system", 
      "time t.", 
      "results", 
      "literature", 
      "variables", 
      "failure", 
      "conditions", 
      "T.", 
      "addition", 
      "corresponds", 
      "paper"
    ], 
    "name": "The number of failed components in a coherent working system when the lifetimes are discretely distributed", 
    "pagination": "1081-1094", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1137308819"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00184-021-00817-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00184-021-00817-2", 
      "https://app.dimensions.ai/details/publication/pub.1137308819"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_911.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00184-021-00817-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00184-021-00817-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00184-021-00817-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00184-021-00817-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00184-021-00817-2'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      21 PREDICATES      54 URIs      42 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00184-021-00817-2 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nf242f27215a44121abe9f3689a5d689f
4 schema:citation sg:pub.10.1007/s00362-014-0632-4
5 sg:pub.10.1007/s00362-016-0850-z
6 sg:pub.10.1007/s11749-017-0535-5
7 sg:pub.10.1007/s11749-020-00724-0
8 schema:datePublished 2021-04-19
9 schema:datePublishedReg 2021-04-19
10 schema:description In this paper, we study the number of failed components of a coherent system. We consider the case when the component lifetimes are discrete random variables that may be dependent and non-identically distributed. Firstly, we compute the probability that there are exactly i, i=0,…,n-k,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=0,\ldots ,n-k,$$\end{document} failures in a k-out-of-n system under the condition that it is operating at time t. Next, we extend this result to other coherent systems. In addition, we show that, in the most popular model of independent and identically distributed component lifetimes, the obtained probability corresponds to the respective one derived in the continuous case and existing in the literature.
11 schema:genre article
12 schema:isAccessibleForFree true
13 schema:isPartOf N4c99bb925fc0496ebcad86c37cf05bf2
14 N593a34ee3e9b47afa29afcd192aebe25
15 sg:journal.1041634
16 schema:keywords N system
17 T.
18 addition
19 cases
20 coherent system
21 component lifetimes
22 components
23 conditions
24 continuous case
25 corresponds
26 discrete random variables
27 failure
28 lifetime
29 literature
30 model
31 number
32 paper
33 popular models
34 probability
35 probability corresponds
36 random variables
37 results
38 system
39 time t.
40 variables
41 working system
42 schema:name The number of failed components in a coherent working system when the lifetimes are discretely distributed
43 schema:pagination 1081-1094
44 schema:productId N5112f0d678c740fd85f82451daecabf5
45 Ne32b31d1213d41c2adb2a2be920c3676
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137308819
47 https://doi.org/10.1007/s00184-021-00817-2
48 schema:sdDatePublished 2022-12-01T06:43
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N18abcddf0a534c02a0eacefa6e780c52
51 schema:url https://doi.org/10.1007/s00184-021-00817-2
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N18abcddf0a534c02a0eacefa6e780c52 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N4c99bb925fc0496ebcad86c37cf05bf2 schema:issueNumber 7
58 rdf:type schema:PublicationIssue
59 N5112f0d678c740fd85f82451daecabf5 schema:name doi
60 schema:value 10.1007/s00184-021-00817-2
61 rdf:type schema:PropertyValue
62 N593a34ee3e9b47afa29afcd192aebe25 schema:volumeNumber 84
63 rdf:type schema:PublicationVolume
64 Ne32b31d1213d41c2adb2a2be920c3676 schema:name dimensions_id
65 schema:value pub.1137308819
66 rdf:type schema:PropertyValue
67 Nf242f27215a44121abe9f3689a5d689f rdf:first sg:person.015436211670.02
68 rdf:rest rdf:nil
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
73 schema:name Statistics
74 rdf:type schema:DefinedTerm
75 sg:journal.1041634 schema:issn 0026-1335
76 1435-926X
77 schema:name Metrika
78 schema:publisher Springer Nature
79 rdf:type schema:Periodical
80 sg:person.015436211670.02 schema:affiliation grid-institutes:grid.5374.5
81 schema:familyName Jasiński
82 schema:givenName Krzysztof
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015436211670.02
84 rdf:type schema:Person
85 sg:pub.10.1007/s00362-014-0632-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048519769
86 https://doi.org/10.1007/s00362-014-0632-4
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s00362-016-0850-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1054515191
89 https://doi.org/10.1007/s00362-016-0850-z
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s11749-017-0535-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085128170
92 https://doi.org/10.1007/s11749-017-0535-5
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s11749-020-00724-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129018531
95 https://doi.org/10.1007/s11749-020-00724-0
96 rdf:type schema:CreativeWork
97 grid-institutes:grid.5374.5 schema:alternateName Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100, Torun, Poland
98 schema:name Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100, Torun, Poland
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...