Kernel density estimation from complex surveys in the presence of complete auxiliary information View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-01

AUTHORS

Sayed A. Mostafa, Ibrahim A. Ahmad

ABSTRACT

Auxiliary information is widely used in survey sampling to enhance the precision of estimators of finite population parameters, such as the finite population mean, percentiles, and distribution function. In the context of complex surveys, we show how auxiliary information can be used effectively in kernel estimation of the superpopulation density function of a given study variable. We propose two classes of “model-assisted” kernel density estimators that make efficient use of auxiliary information. For one class we assume that the functional relationship between the study variable Y and the auxiliary variable X is known, while for the other class the relationship is assumed unknown and is estimated using kernel smoothing techniques. Under the first class, we show that if the functional relationship can be written as a simple linear regression model with constant error variance, the mean of the proposed density estimator will be identical to the well-known regression estimator of the finite population mean. If we drop the intercept from the linear model and allow the error variance to be proportional to the auxiliary variable, the mean of the proposed density estimator matches the ratio estimator of the finite population mean. The properties of the new density estimators are studied under a combined design-model-based inference framework, which accounts for the underlying superpopulation model as well as the randomization distribution induced by the sampling design. Moreover, the asymptotic normality of each estimator is derived under both design-based and combined inference frameworks when the sampling design is simple random sampling without replacement. For the practical implementation of these estimators, we discuss how data-driven bandwidth estimators can be obtained. The finite sample properties of the proposed estimators are addressed via simulations and an example that mimics a real survey. These simulations show that the new estimators perform very well compared to standard kernel estimators which do not utilize the auxiliary information. More... »

PAGES

1-44

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00184-018-0703-y

DOI

http://dx.doi.org/10.1007/s00184-018-0703-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111030520


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "North Carolina Agricultural and Technical State University", 
          "id": "https://www.grid.ac/institutes/grid.261037.1", 
          "name": [
            "Department of Statistics, Indiana University, Bloomington, IN, USA", 
            "Department of Mathematics, North Carolina A&T State University, Greensboro, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mostafa", 
        "givenName": "Sayed A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oklahoma State University", 
          "id": "https://www.grid.ac/institutes/grid.65519.3e", 
          "name": [
            "Department of Statistics, Oklahoma State University, Stillwater, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahmad", 
        "givenName": "Ibrahim A.", 
        "id": "sg:person.010425651511.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010425651511.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jspi.2003.09.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008817657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1080/15598608.2008.10411884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012600576", 
          "https://doi.org/10.1080/15598608.2008.10411884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1080/15598608.2008.10411884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012600576", 
          "https://doi.org/10.1080/15598608.2008.10411884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9469.00339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022418415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7161(88)06014-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034605383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0266466608080304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039774652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177704472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046915289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spl.2008.01.099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049487359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1081/etc-100104939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053576664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00184-009-0244-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053619740", 
          "https://doi.org/10.1007/s00184-009-0244-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00184-009-0244-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053619740", 
          "https://doi.org/10.1007/s00184-009-0244-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00184-009-0244-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053619740", 
          "https://doi.org/10.1007/s00184-009-0244-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1982.10477770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058302593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/77.2.365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059420045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/92.4.831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059421453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1109020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062865774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/009053605000000651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064388847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/11-ejs629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064392577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177728190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064401325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1015956706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064405874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176345153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064407698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176345580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064407837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176345787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064407917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176349267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v027.i05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1403631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069473912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2529429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069975083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40300-017-0127-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092089343", 
          "https://doi.org/10.1007/s40300-017-0127-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470523551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470523551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/8124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098837032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1106813179", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118032619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106813179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109705035", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4378-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705035", 
          "https://doi.org/10.1007/978-1-4612-4378-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4378-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705035", 
          "https://doi.org/10.1007/978-1-4612-4378-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-2885-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705819", 
          "https://doi.org/10.1007/978-1-4899-2885-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-2885-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705819", 
          "https://doi.org/10.1007/978-1-4899-2885-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109705924", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4493-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705924", 
          "https://doi.org/10.1007/978-1-4899-4493-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4493-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705924", 
          "https://doi.org/10.1007/978-1-4899-4493-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420036909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109725539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1991.tb01857.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1991.tb01857.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1994.tb02009.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1994.tb02009.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458907"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "Auxiliary information is widely used in survey sampling to enhance the precision of estimators of finite population parameters, such as the finite population mean, percentiles, and distribution function. In the context of complex surveys, we show how auxiliary information can be used effectively in kernel estimation of the superpopulation density function of a given study variable. We propose two classes of \u201cmodel-assisted\u201d kernel density estimators that make efficient use of auxiliary information. For one class we assume that the functional relationship between the study variable Y and the auxiliary variable X is known, while for the other class the relationship is assumed unknown and is estimated using kernel smoothing techniques. Under the first class, we show that if the functional relationship can be written as a simple linear regression model with constant error variance, the mean of the proposed density estimator will be identical to the well-known regression estimator of the finite population mean. If we drop the intercept from the linear model and allow the error variance to be proportional to the auxiliary variable, the mean of the proposed density estimator matches the ratio estimator of the finite population mean. The properties of the new density estimators are studied under a combined design-model-based inference framework, which accounts for the underlying superpopulation model as well as the randomization distribution induced by the sampling design. Moreover, the asymptotic normality of each estimator is derived under both design-based and combined inference frameworks when the sampling design is simple random sampling without replacement. For the practical implementation of these estimators, we discuss how data-driven bandwidth estimators can be obtained. The finite sample properties of the proposed estimators are addressed via simulations and an example that mimics a real survey. These simulations show that the new estimators perform very well compared to standard kernel estimators which do not utilize the auxiliary information.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00184-018-0703-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041634", 
        "issn": [
          "0026-1335", 
          "1435-926X"
        ], 
        "name": "Metrika", 
        "type": "Periodical"
      }
    ], 
    "name": "Kernel density estimation from complex surveys in the presence of complete auxiliary information", 
    "pagination": "1-44", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "111c172c3a21ac12b30fd011342a265478f14ddd35d6316ce6e0aaf4deecf246"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00184-018-0703-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111030520"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00184-018-0703-y", 
      "https://app.dimensions.ai/details/publication/pub.1111030520"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000309_0000000309/records_106271_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00184-018-0703-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00184-018-0703-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00184-018-0703-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00184-018-0703-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00184-018-0703-y'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      61 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00184-018-0703-y schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Na38a7567d04e4a9882e9148139b4faf1
4 schema:citation sg:pub.10.1007/978-1-4612-4378-6
5 sg:pub.10.1007/978-1-4899-2885-6
6 sg:pub.10.1007/978-1-4899-4493-1
7 sg:pub.10.1007/s00184-009-0244-5
8 sg:pub.10.1007/s40300-017-0127-x
9 sg:pub.10.1080/15598608.2008.10411884
10 https://app.dimensions.ai/details/publication/pub.1106813179
11 https://app.dimensions.ai/details/publication/pub.1109705035
12 https://app.dimensions.ai/details/publication/pub.1109705924
13 https://doi.org/10.1002/9780470523551
14 https://doi.org/10.1002/9781118032619
15 https://doi.org/10.1016/j.jspi.2003.09.036
16 https://doi.org/10.1016/j.spl.2008.01.099
17 https://doi.org/10.1016/s0169-7161(88)06014-6
18 https://doi.org/10.1017/s0266466608080304
19 https://doi.org/10.1080/01621459.1982.10477770
20 https://doi.org/10.1081/etc-100104939
21 https://doi.org/10.1093/biomet/77.2.365
22 https://doi.org/10.1093/biomet/92.4.831
23 https://doi.org/10.1111/1467-9469.00339
24 https://doi.org/10.1111/j.2517-6161.1991.tb01857.x
25 https://doi.org/10.1111/j.2517-6161.1994.tb02009.x
26 https://doi.org/10.1137/1109020
27 https://doi.org/10.1142/8124
28 https://doi.org/10.1201/9781420036909
29 https://doi.org/10.1214/009053605000000651
30 https://doi.org/10.1214/11-ejs629
31 https://doi.org/10.1214/aoms/1177704472
32 https://doi.org/10.1214/aoms/1177728190
33 https://doi.org/10.1214/aos/1015956706
34 https://doi.org/10.1214/aos/1176345153
35 https://doi.org/10.1214/aos/1176345580
36 https://doi.org/10.1214/aos/1176345787
37 https://doi.org/10.1214/aos/1176349267
38 https://doi.org/10.18637/jss.v027.i05
39 https://doi.org/10.2307/1403631
40 https://doi.org/10.2307/2529429
41 schema:datePublished 2019-01-01
42 schema:datePublishedReg 2019-01-01
43 schema:description Auxiliary information is widely used in survey sampling to enhance the precision of estimators of finite population parameters, such as the finite population mean, percentiles, and distribution function. In the context of complex surveys, we show how auxiliary information can be used effectively in kernel estimation of the superpopulation density function of a given study variable. We propose two classes of “model-assisted” kernel density estimators that make efficient use of auxiliary information. For one class we assume that the functional relationship between the study variable Y and the auxiliary variable X is known, while for the other class the relationship is assumed unknown and is estimated using kernel smoothing techniques. Under the first class, we show that if the functional relationship can be written as a simple linear regression model with constant error variance, the mean of the proposed density estimator will be identical to the well-known regression estimator of the finite population mean. If we drop the intercept from the linear model and allow the error variance to be proportional to the auxiliary variable, the mean of the proposed density estimator matches the ratio estimator of the finite population mean. The properties of the new density estimators are studied under a combined design-model-based inference framework, which accounts for the underlying superpopulation model as well as the randomization distribution induced by the sampling design. Moreover, the asymptotic normality of each estimator is derived under both design-based and combined inference frameworks when the sampling design is simple random sampling without replacement. For the practical implementation of these estimators, we discuss how data-driven bandwidth estimators can be obtained. The finite sample properties of the proposed estimators are addressed via simulations and an example that mimics a real survey. These simulations show that the new estimators perform very well compared to standard kernel estimators which do not utilize the auxiliary information.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf sg:journal.1041634
48 schema:name Kernel density estimation from complex surveys in the presence of complete auxiliary information
49 schema:pagination 1-44
50 schema:productId N3b88f63f3e164bfc8539d422306165b2
51 N97ce4c3fbb8c4d1f98a8e778d966ba59
52 Na2c8379fcfc04e32baed8fc3d72f7378
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111030520
54 https://doi.org/10.1007/s00184-018-0703-y
55 schema:sdDatePublished 2019-04-11T08:30
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N05ec742190be4d6cbdc10fa859eb2836
58 schema:url https://link.springer.com/10.1007%2Fs00184-018-0703-y
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N05ec742190be4d6cbdc10fa859eb2836 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N3b88f63f3e164bfc8539d422306165b2 schema:name dimensions_id
65 schema:value pub.1111030520
66 rdf:type schema:PropertyValue
67 N3bfef3971662495ea17f9f2b2693fa8b schema:affiliation https://www.grid.ac/institutes/grid.261037.1
68 schema:familyName Mostafa
69 schema:givenName Sayed A.
70 rdf:type schema:Person
71 N97ce4c3fbb8c4d1f98a8e778d966ba59 schema:name doi
72 schema:value 10.1007/s00184-018-0703-y
73 rdf:type schema:PropertyValue
74 Na2c8379fcfc04e32baed8fc3d72f7378 schema:name readcube_id
75 schema:value 111c172c3a21ac12b30fd011342a265478f14ddd35d6316ce6e0aaf4deecf246
76 rdf:type schema:PropertyValue
77 Na38a7567d04e4a9882e9148139b4faf1 rdf:first N3bfef3971662495ea17f9f2b2693fa8b
78 rdf:rest Nf71b82a424f84865afb10073f331a657
79 Nf71b82a424f84865afb10073f331a657 rdf:first sg:person.010425651511.86
80 rdf:rest rdf:nil
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
85 schema:name Statistics
86 rdf:type schema:DefinedTerm
87 sg:journal.1041634 schema:issn 0026-1335
88 1435-926X
89 schema:name Metrika
90 rdf:type schema:Periodical
91 sg:person.010425651511.86 schema:affiliation https://www.grid.ac/institutes/grid.65519.3e
92 schema:familyName Ahmad
93 schema:givenName Ibrahim A.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010425651511.86
95 rdf:type schema:Person
96 sg:pub.10.1007/978-1-4612-4378-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705035
97 https://doi.org/10.1007/978-1-4612-4378-6
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/978-1-4899-2885-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705819
100 https://doi.org/10.1007/978-1-4899-2885-6
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/978-1-4899-4493-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705924
103 https://doi.org/10.1007/978-1-4899-4493-1
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s00184-009-0244-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053619740
106 https://doi.org/10.1007/s00184-009-0244-5
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s40300-017-0127-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1092089343
109 https://doi.org/10.1007/s40300-017-0127-x
110 rdf:type schema:CreativeWork
111 sg:pub.10.1080/15598608.2008.10411884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012600576
112 https://doi.org/10.1080/15598608.2008.10411884
113 rdf:type schema:CreativeWork
114 https://app.dimensions.ai/details/publication/pub.1106813179 schema:CreativeWork
115 https://app.dimensions.ai/details/publication/pub.1109705035 schema:CreativeWork
116 https://app.dimensions.ai/details/publication/pub.1109705924 schema:CreativeWork
117 https://doi.org/10.1002/9780470523551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661871
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/9781118032619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106813179
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.jspi.2003.09.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008817657
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.spl.2008.01.099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049487359
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0169-7161(88)06014-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034605383
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1017/s0266466608080304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039774652
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1080/01621459.1982.10477770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058302593
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1081/etc-100104939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053576664
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1093/biomet/77.2.365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420045
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1093/biomet/92.4.831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059421453
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1111/1467-9469.00339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022418415
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1111/j.2517-6161.1991.tb01857.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458712
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1111/j.2517-6161.1994.tb02009.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458907
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1137/1109020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062865774
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1142/8124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098837032
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1201/9781420036909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109725539
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1214/009053605000000651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064388847
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1214/11-ejs629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064392577
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1214/aoms/1177704472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046915289
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1214/aoms/1177728190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064401325
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1214/aos/1015956706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064405874
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1214/aos/1176345153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064407698
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1214/aos/1176345580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064407837
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1214/aos/1176345787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064407917
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1214/aos/1176349267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408824
166 rdf:type schema:CreativeWork
167 https://doi.org/10.18637/jss.v027.i05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672391
168 rdf:type schema:CreativeWork
169 https://doi.org/10.2307/1403631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069473912
170 rdf:type schema:CreativeWork
171 https://doi.org/10.2307/2529429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069975083
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.261037.1 schema:alternateName North Carolina Agricultural and Technical State University
174 schema:name Department of Mathematics, North Carolina A&T State University, Greensboro, NC, USA
175 Department of Statistics, Indiana University, Bloomington, IN, USA
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.65519.3e schema:alternateName Oklahoma State University
178 schema:name Department of Statistics, Oklahoma State University, Stillwater, OK, USA
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...