Ontology type: schema:ScholarlyArticle
2019-03-15
AUTHORSMarcos Álvarez-Díaz
ABSTRACTCan we accurately predict the Brent oil price? If so, which forecasting method can provide the most accurate forecasts? To unravel these questions, we aim at predicting the weekly Brent oil price growth rate by using several forecasting methods that are based on different approaches. Basically, we assess and compare the out-of-sample performances of linear parametric models (the ARIMA, the ARFIMA and the autoregressive model), a nonlinear parametric model (the GARCH-in-Mean model) and different nonparametric data-driven methods (a nonlinear autoregressive artificial neural network, genetic programming and the nearest-neighbor method). The results obtained show that (1) all methods are capable of predicting accurately both the value and the directional change in the Brent oil price, (2) there are no significant forecasting differences among the methods and (3) the volatility of the series could be an important factor to enhance our predictive ability. More... »
PAGES1-21
http://scigraph.springernature.com/pub.10.1007/s00181-019-01665-w
DOIhttp://dx.doi.org/10.1007/s00181-019-01665-w
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1112780280
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Econometrics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Economics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Vigo",
"id": "https://www.grid.ac/institutes/grid.6312.6",
"name": [
"Department of Fundaments of Economic Analysis and History, and Economic Institutions, University of Vigo, Vigo, Spain"
],
"type": "Organization"
},
"familyName": "\u00c1lvarez-D\u00edaz",
"givenName": "Marcos",
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/j.eneco.2010.07.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000445379"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.eneco.2010.04.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001272410"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.mcm.2011.04.022",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002165551"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0140-9883(00)00049-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002415700"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-72588-6_149",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003471058",
"https://doi.org/10.1007/978-3-540-72588-6_149"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0925-2312(00)00300-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007589685"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/iere.12074",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011414129"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0167-2789(91)90222-u",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011845436"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0167-2789(91)90222-u",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011845436"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cie.2007.10.020",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011895251"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4337/9780857931023.00024",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012942962"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.eneco.2011.07.018",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016966676"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1540-6261.1991.tb04646.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022852242"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0167-2789(89)90074-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024509207"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0167-2789(89)90074-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024509207"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0022-1996(98)00017-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024743338"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1468-0262.2006.00718.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026170375"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/(sici)1099-1050(199707)6:4<327::aid-hec282>3.0.co;2-w",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027432917"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.energy.2012.07.055",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028031025"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4236/ajor.2016.63023",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029911471"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0925-2312(95)00039-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030126723"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.eneco.2008.05.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030829928"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s12667-015-0151-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030931926",
"https://doi.org/10.1007/s12667-015-0151-y"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0140-9883(00)00079-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032326955"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/00036840600905308",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032424566"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0169-2070(96)00719-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035887615"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.eneco.2009.01.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040710127"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0010-4655(01)00154-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045285701"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/b978-0-444-53683-9.00008-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049023999"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0091924",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049441366",
"https://doi.org/10.1007/bfb0091924"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0140-9883(00)00075-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050361068"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1155/2014/201402",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051900736"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijforecast.2006.03.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052401159"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/00036846.2016.1158922",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052651138"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jfineco.2012.09.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053444688"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/0047287508321199",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053867203"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/0047287508321199",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053867203"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.166452",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057742547"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/07350015.2011.648859",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058340042"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.59.845",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060796305"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.59.845",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060796305"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tsmcc.2006.876059",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061797922"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1162/108118200569171",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1063349566"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5547/issn0195-6574-ej-vol15-no2-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072973285"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5547/issn0195-6574-ej-vol20-no2-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072973540"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5547/issn0195-6574-ej-vol27-no4-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072973792"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijforecast.2017.07.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091876956"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cec.2001.934402",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094618817"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1201/9781420036206",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095905324"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00500-018-3023-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101178864",
"https://doi.org/10.1007/s00500-018-3023-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00500-018-3023-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101178864",
"https://doi.org/10.1007/s00500-018-3023-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00500-018-3023-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101178864",
"https://doi.org/10.1007/s00500-018-3023-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00500-018-3023-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101178864",
"https://doi.org/10.1007/s00500-018-3023-2"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2139/ssrn.958942",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1102228975"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2139/ssrn.2275428",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1102380103"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2139/ssrn.2316240",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1102386398"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.eneco.2018.08.010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1106319258"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00181-018-1574-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107660783",
"https://doi.org/10.1007/s00181-018-1574-9"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.2517-6161.1992.tb01884.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1110458761"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.2517-6161.1992.tb01884.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1110458761"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-03-15",
"datePublishedReg": "2019-03-15",
"description": "Can we accurately predict the Brent oil price? If so, which forecasting method can provide the most accurate forecasts? To unravel these questions, we aim at predicting the weekly Brent oil price growth rate by using several forecasting methods that are based on different approaches. Basically, we assess and compare the out-of-sample performances of linear parametric models (the ARIMA, the ARFIMA and the autoregressive model), a nonlinear parametric model (the GARCH-in-Mean model) and different nonparametric data-driven methods (a nonlinear autoregressive artificial neural network, genetic programming and the nearest-neighbor method). The results obtained show that (1) all methods are capable of predicting accurately both the value and the directional change in the Brent oil price, (2) there are no significant forecasting differences among the methods and (3) the volatility of the series could be an important factor to enhance our predictive ability.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00181-019-01665-w",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1027901",
"issn": [
"0377-7332",
"1435-8921"
],
"name": "Empirical Economics",
"type": "Periodical"
}
],
"name": "Is it possible to accurately forecast the evolution of Brent crude oil prices? An answer based on parametric and nonparametric forecasting methods",
"pagination": "1-21",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"d90949e02b849a37773e3ab53b56c5efc54dfc351401f0519fbcbdb25d8b8e6e"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00181-019-01665-w"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1112780280"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00181-019-01665-w",
"https://app.dimensions.ai/details/publication/pub.1112780280"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T11:53",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29197_00000004.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs00181-019-01665-w"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00181-019-01665-w'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00181-019-01665-w'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00181-019-01665-w'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00181-019-01665-w'
This table displays all metadata directly associated to this object as RDF triples.
215 TRIPLES
21 PREDICATES
76 URIs
16 LITERALS
5 BLANK NODES