Short- and long-run heterogeneous investment dynamics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-01-19

AUTHORS

Fabio Bacchini, Maria Elena Bontempi, Roberto Golinelli, Cecilia Jona-Lasinio

ABSTRACT

In this paper, we model the dynamics of business investment taking into account asset-specific characteristics potentially affecting the reactivity of aggregate and disaggregate capital accumulation over the business cycle. We estimate Information and Communication Technologies (ICTs) and traditional investment (non-ICT) determinants within a Vector Error Correction Model testing the assumptions of the flexible accelerator and neoclassical model as well as the role of financial constraints and uncertainty. We evaluate our model on Italian data over the period 1980–2012, and we check our results also with Spanish and UK data. Our findings support the assumption that capital is heterogeneous since short- and long-run determinants are significantly different across the assets. Traditional assets experience stock adjustment costs while ICT investment incurs flow adjustment cost. In the short run, liquidity is a key determinant of investment independently of the asset type. In the long run, uncertainty significantly affects ICT. Finally, the results of the counterfactual exercises support the idea that ICT is a key policy variable to foster economic growth. More... »

PAGES

343-378

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00181-016-1211-4

DOI

http://dx.doi.org/10.1007/s00181-016-1211-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053888426


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Division of Economic Studies and Econometric Forecasts, Italian Institute of Statistics, ISTAT, Via Tuscolana, 1776, 00173, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.425381.9", 
          "name": [
            "Division of Economic Studies and Econometric Forecasts, Italian Institute of Statistics, ISTAT, Via Tuscolana, 1776, 00173, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bacchini", 
        "givenName": "Fabio", 
        "id": "sg:person.016123564565.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016123564565.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Economics, University of Bologna, Via Zamboni, 33, 40126, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "Department of Economics, University of Bologna, Via Zamboni, 33, 40126, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bontempi", 
        "givenName": "Maria Elena", 
        "id": "sg:person.07420513365.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420513365.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Economics, University of Bologna, Via Zamboni, 33, 40126, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "Department of Economics, University of Bologna, Via Zamboni, 33, 40126, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Golinelli", 
        "givenName": "Roberto", 
        "id": "sg:person.013733623261.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013733623261.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Luiss Lab of European Economics, Luiss University, Viale Romania 32, 00191, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.18038.32", 
          "name": [
            "Division of Economic Studies and Econometric Forecasts, Italian Institute of Statistics, ISTAT, Via Tuscolana, 1776, 00173, Rome, Italy", 
            "Luiss Lab of European Economics, Luiss University, Viale Romania 32, 00191, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jona-Lasinio", 
        "givenName": "Cecilia", 
        "id": "sg:person.011013454365.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011013454365.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00181-014-0839-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028802185", 
          "https://doi.org/10.1007/s00181-014-0839-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s181-002-8356-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036905722", 
          "https://doi.org/10.1007/s181-002-8356-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00181-008-0243-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034117621", 
          "https://doi.org/10.1007/s00181-008-0243-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01-19", 
    "datePublishedReg": "2017-01-19", 
    "description": "In this paper, we model the dynamics of business investment taking into account asset-specific characteristics potentially affecting the reactivity of aggregate and disaggregate capital accumulation over the business cycle. We estimate Information and Communication Technologies (ICTs) and traditional investment (non-ICT) determinants within a Vector Error Correction Model testing the assumptions of the flexible accelerator and neoclassical model as well as the role of financial constraints and uncertainty. We evaluate our model on Italian data over the period 1980\u20132012, and we check our results also with Spanish and UK data. Our findings support the assumption that capital is heterogeneous since short- and long-run determinants are significantly different across the assets. Traditional assets experience stock adjustment costs while ICT investment incurs flow adjustment cost. In the short run, liquidity is a key determinant of investment independently of the asset type. In the long run, uncertainty significantly affects ICT. Finally, the results of the counterfactual exercises support the idea that ICT is a key policy variable to foster economic growth.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00181-016-1211-4", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1027901", 
        "issn": [
          "0377-7332", 
          "1435-8921"
        ], 
        "name": "Empirical Economics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "keywords": [
      "adjustment costs", 
      "vector error correction model", 
      "asset-specific characteristics", 
      "error correction model", 
      "key policy variables", 
      "business cycle", 
      "investment determinants", 
      "neoclassical model", 
      "counterfactual exercises", 
      "investment dynamics", 
      "policy variables", 
      "business investment", 
      "capital accumulation", 
      "short run", 
      "economic growth", 
      "correction model", 
      "traditional assets", 
      "ICT investment", 
      "asset types", 
      "long run", 
      "UK data", 
      "financial constraints", 
      "Italian data", 
      "flexible accelerator", 
      "investment", 
      "key determinant", 
      "assets", 
      "determinants", 
      "run", 
      "cost", 
      "liquidity", 
      "capital", 
      "uncertainty", 
      "ICT", 
      "assumption", 
      "model", 
      "communication technologies", 
      "growth", 
      "variables", 
      "dynamics", 
      "constraints", 
      "data", 
      "findings", 
      "results", 
      "idea", 
      "information", 
      "role", 
      "cycle", 
      "technology", 
      "exercise", 
      "characteristics", 
      "accumulation", 
      "types", 
      "paper", 
      "accelerator", 
      "reactivity"
    ], 
    "name": "Short- and long-run heterogeneous investment dynamics", 
    "pagination": "343-378", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053888426"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00181-016-1211-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00181-016-1211-4", 
      "https://app.dimensions.ai/details/publication/pub.1053888426"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_737.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00181-016-1211-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00181-016-1211-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00181-016-1211-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00181-016-1211-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00181-016-1211-4'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      84 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00181-016-1211-4 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 anzsrc-for:1403
4 schema:author N1aa04cd95f9446f6b7bbfb6320b87f6a
5 schema:citation sg:pub.10.1007/s00181-008-0243-9
6 sg:pub.10.1007/s00181-014-0839-1
7 sg:pub.10.1007/s181-002-8356-9
8 schema:datePublished 2017-01-19
9 schema:datePublishedReg 2017-01-19
10 schema:description In this paper, we model the dynamics of business investment taking into account asset-specific characteristics potentially affecting the reactivity of aggregate and disaggregate capital accumulation over the business cycle. We estimate Information and Communication Technologies (ICTs) and traditional investment (non-ICT) determinants within a Vector Error Correction Model testing the assumptions of the flexible accelerator and neoclassical model as well as the role of financial constraints and uncertainty. We evaluate our model on Italian data over the period 1980–2012, and we check our results also with Spanish and UK data. Our findings support the assumption that capital is heterogeneous since short- and long-run determinants are significantly different across the assets. Traditional assets experience stock adjustment costs while ICT investment incurs flow adjustment cost. In the short run, liquidity is a key determinant of investment independently of the asset type. In the long run, uncertainty significantly affects ICT. Finally, the results of the counterfactual exercises support the idea that ICT is a key policy variable to foster economic growth.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf N5bd63413bd0a4bbbb5251136f7c0911a
14 Nfdad5e54c0034567ac4c5bada0205839
15 sg:journal.1027901
16 schema:keywords ICT
17 ICT investment
18 Italian data
19 UK data
20 accelerator
21 accumulation
22 adjustment costs
23 asset types
24 asset-specific characteristics
25 assets
26 assumption
27 business cycle
28 business investment
29 capital
30 capital accumulation
31 characteristics
32 communication technologies
33 constraints
34 correction model
35 cost
36 counterfactual exercises
37 cycle
38 data
39 determinants
40 dynamics
41 economic growth
42 error correction model
43 exercise
44 financial constraints
45 findings
46 flexible accelerator
47 growth
48 idea
49 information
50 investment
51 investment determinants
52 investment dynamics
53 key determinant
54 key policy variables
55 liquidity
56 long run
57 model
58 neoclassical model
59 paper
60 policy variables
61 reactivity
62 results
63 role
64 run
65 short run
66 technology
67 traditional assets
68 types
69 uncertainty
70 variables
71 vector error correction model
72 schema:name Short- and long-run heterogeneous investment dynamics
73 schema:pagination 343-378
74 schema:productId N777f5a2d2eed4eef9da8a247aa0addaf
75 Ndb4e3f83ff8e4977aac6bcc7669f418d
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053888426
77 https://doi.org/10.1007/s00181-016-1211-4
78 schema:sdDatePublished 2022-08-04T17:06
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher Ne4e8fb3ba3b74a8b86d67d5742868419
81 schema:url https://doi.org/10.1007/s00181-016-1211-4
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N1aa04cd95f9446f6b7bbfb6320b87f6a rdf:first sg:person.016123564565.05
86 rdf:rest N38ec7acfc65548188298960013564d22
87 N38ec7acfc65548188298960013564d22 rdf:first sg:person.07420513365.09
88 rdf:rest Na665ceeb28024c36af4c942c841a5fc6
89 N5bd63413bd0a4bbbb5251136f7c0911a schema:volumeNumber 54
90 rdf:type schema:PublicationVolume
91 N777f5a2d2eed4eef9da8a247aa0addaf schema:name doi
92 schema:value 10.1007/s00181-016-1211-4
93 rdf:type schema:PropertyValue
94 Na665ceeb28024c36af4c942c841a5fc6 rdf:first sg:person.013733623261.28
95 rdf:rest Nb2f5f93cad9143c4a6a7c647bd3a7af0
96 Nb2f5f93cad9143c4a6a7c647bd3a7af0 rdf:first sg:person.011013454365.21
97 rdf:rest rdf:nil
98 Ndb4e3f83ff8e4977aac6bcc7669f418d schema:name dimensions_id
99 schema:value pub.1053888426
100 rdf:type schema:PropertyValue
101 Ne4e8fb3ba3b74a8b86d67d5742868419 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 Nfdad5e54c0034567ac4c5bada0205839 schema:issueNumber 2
104 rdf:type schema:PublicationIssue
105 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
106 schema:name Economics
107 rdf:type schema:DefinedTerm
108 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
109 schema:name Applied Economics
110 rdf:type schema:DefinedTerm
111 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
112 schema:name Econometrics
113 rdf:type schema:DefinedTerm
114 sg:journal.1027901 schema:issn 0377-7332
115 1435-8921
116 schema:name Empirical Economics
117 schema:publisher Springer Nature
118 rdf:type schema:Periodical
119 sg:person.011013454365.21 schema:affiliation grid-institutes:grid.18038.32
120 schema:familyName Jona-Lasinio
121 schema:givenName Cecilia
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011013454365.21
123 rdf:type schema:Person
124 sg:person.013733623261.28 schema:affiliation grid-institutes:grid.6292.f
125 schema:familyName Golinelli
126 schema:givenName Roberto
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013733623261.28
128 rdf:type schema:Person
129 sg:person.016123564565.05 schema:affiliation grid-institutes:grid.425381.9
130 schema:familyName Bacchini
131 schema:givenName Fabio
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016123564565.05
133 rdf:type schema:Person
134 sg:person.07420513365.09 schema:affiliation grid-institutes:grid.6292.f
135 schema:familyName Bontempi
136 schema:givenName Maria Elena
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420513365.09
138 rdf:type schema:Person
139 sg:pub.10.1007/s00181-008-0243-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034117621
140 https://doi.org/10.1007/s00181-008-0243-9
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s00181-014-0839-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028802185
143 https://doi.org/10.1007/s00181-014-0839-1
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s181-002-8356-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036905722
146 https://doi.org/10.1007/s181-002-8356-9
147 rdf:type schema:CreativeWork
148 grid-institutes:grid.18038.32 schema:alternateName Luiss Lab of European Economics, Luiss University, Viale Romania 32, 00191, Rome, Italy
149 schema:name Division of Economic Studies and Econometric Forecasts, Italian Institute of Statistics, ISTAT, Via Tuscolana, 1776, 00173, Rome, Italy
150 Luiss Lab of European Economics, Luiss University, Viale Romania 32, 00191, Rome, Italy
151 rdf:type schema:Organization
152 grid-institutes:grid.425381.9 schema:alternateName Division of Economic Studies and Econometric Forecasts, Italian Institute of Statistics, ISTAT, Via Tuscolana, 1776, 00173, Rome, Italy
153 schema:name Division of Economic Studies and Econometric Forecasts, Italian Institute of Statistics, ISTAT, Via Tuscolana, 1776, 00173, Rome, Italy
154 rdf:type schema:Organization
155 grid-institutes:grid.6292.f schema:alternateName Department of Economics, University of Bologna, Via Zamboni, 33, 40126, Bologna, Italy
156 schema:name Department of Economics, University of Bologna, Via Zamboni, 33, 40126, Bologna, Italy
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...