A Monte Carlo study of the BE estimator for growth regressions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-08

AUTHORS

Jan Ditzen, Erich Gundlach

ABSTRACT

A recent Monte Carlo study claims that the BE estimator outperforms other panel estimators in terms of average estimation bias in a dynamic specification of the Solow model in levels (Hauk and Wacziarg in J Econ Growth 14(2):103–147, 2009). Our simulation results show that the reported performance of the BE estimator depends on the selected parameterization of the data generating process. Using alternative parameter values, a different model specification, and a restricted cross-section estimator, we find that the BE estimator tends to produce a coefficient of the lagged endogenous variable that is biased toward 1. More... »

PAGES

31-55

References to SciGraph publications

  • 1996. Dynamic Linear Models for Heterogenous Panels in THE ECONOMETRICS OF PANEL DATA
  • 2009-06. A Monte Carlo study of growth regressions in JOURNAL OF ECONOMIC GROWTH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00181-015-1000-5

    DOI

    http://dx.doi.org/10.1007/s00181-015-1000-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1000400060


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Economics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Economics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Heriot-Watt University", 
              "id": "https://www.grid.ac/institutes/grid.9531.e", 
              "name": [
                "Heriot-Watt University, Edinburgh, Scotland, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ditzen", 
            "givenName": "Jan", 
            "id": "sg:person.016715207710.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016715207710.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "GIGA German Institute of Global and Area Studies", 
              "id": "https://www.grid.ac/institutes/grid.435041.7", 
              "name": [
                "Hamburg University and GIGA German Institute of Global and Area Studies, Hamburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gundlach", 
            "givenName": "Erich", 
            "id": "sg:person.012205366261.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012205366261.93"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0304-4076(94)01644-f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016201632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.csda.2004.12.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021111073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10887-009-9040-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033005243", 
              "https://doi.org/10.1007/s10887-009-9040-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10887-009-9040-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033005243", 
              "https://doi.org/10.1007/s10887-009-9040-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-0137-7_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037739859", 
              "https://doi.org/10.1007/978-94-009-0137-7_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-6419.2010.00624.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049674152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/63.3.513", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059418571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oep/53.3.541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059948641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/003355398555504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063349078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1561/0800000011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068000538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2118477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069768974"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2526223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069972335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2946651", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070143940"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-08", 
        "datePublishedReg": "2016-08-01", 
        "description": "A recent Monte Carlo study claims that the BE estimator outperforms other panel estimators in terms of average estimation bias in a dynamic specification of the Solow model in levels (Hauk and Wacziarg in J Econ Growth 14(2):103\u2013147, 2009). Our simulation results show that the reported performance of the BE estimator depends on the selected parameterization of the data generating process. Using alternative parameter values, a different model specification, and a restricted cross-section estimator, we find that the BE estimator tends to produce a coefficient of the lagged endogenous variable that is biased toward 1.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00181-015-1000-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1027901", 
            "issn": [
              "0377-7332", 
              "1435-8921"
            ], 
            "name": "Empirical Economics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "51"
          }
        ], 
        "name": "A Monte Carlo study of the BE estimator for growth regressions", 
        "pagination": "31-55", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "01e7af7947632176de31809464b412f6b45885aeb0e238a186b2e83350dd1d2c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00181-015-1000-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1000400060"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00181-015-1000-5", 
          "https://app.dimensions.ai/details/publication/pub.1000400060"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000509.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00181-015-1000-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00181-015-1000-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00181-015-1000-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00181-015-1000-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00181-015-1000-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    109 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00181-015-1000-5 schema:about anzsrc-for:14
    2 anzsrc-for:1402
    3 schema:author N2ea35483d28c42f99262bd98eed060b3
    4 schema:citation sg:pub.10.1007/978-94-009-0137-7_8
    5 sg:pub.10.1007/s10887-009-9040-3
    6 https://doi.org/10.1016/0304-4076(94)01644-f
    7 https://doi.org/10.1016/j.csda.2004.12.015
    8 https://doi.org/10.1093/biomet/63.3.513
    9 https://doi.org/10.1093/oep/53.3.541
    10 https://doi.org/10.1111/j.1467-6419.2010.00624.x
    11 https://doi.org/10.1162/003355398555504
    12 https://doi.org/10.1561/0800000011
    13 https://doi.org/10.2307/2118477
    14 https://doi.org/10.2307/2526223
    15 https://doi.org/10.2307/2946651
    16 schema:datePublished 2016-08
    17 schema:datePublishedReg 2016-08-01
    18 schema:description A recent Monte Carlo study claims that the BE estimator outperforms other panel estimators in terms of average estimation bias in a dynamic specification of the Solow model in levels (Hauk and Wacziarg in J Econ Growth 14(2):103–147, 2009). Our simulation results show that the reported performance of the BE estimator depends on the selected parameterization of the data generating process. Using alternative parameter values, a different model specification, and a restricted cross-section estimator, we find that the BE estimator tends to produce a coefficient of the lagged endogenous variable that is biased toward 1.
    19 schema:genre research_article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree false
    22 schema:isPartOf N5eb4a4f8b72b4768bdb350cb27a6afa1
    23 Nf9c566900b0f408ca2995d86d3d19b8a
    24 sg:journal.1027901
    25 schema:name A Monte Carlo study of the BE estimator for growth regressions
    26 schema:pagination 31-55
    27 schema:productId N475f2f37174d45dc941e0beea5129636
    28 Na8e663e6868d4e6b864b1b4fbb1e0e3b
    29 Nbea13b28034c4b3f9c64ac805458c538
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000400060
    31 https://doi.org/10.1007/s00181-015-1000-5
    32 schema:sdDatePublished 2019-04-11T01:59
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher N6963c41033cc4df9b6843b63d61ec258
    35 schema:url http://link.springer.com/10.1007%2Fs00181-015-1000-5
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset articles
    38 rdf:type schema:ScholarlyArticle
    39 N2ea35483d28c42f99262bd98eed060b3 rdf:first sg:person.016715207710.39
    40 rdf:rest Ncce7013e11764ee4a9e249fa4eee9d5f
    41 N475f2f37174d45dc941e0beea5129636 schema:name dimensions_id
    42 schema:value pub.1000400060
    43 rdf:type schema:PropertyValue
    44 N5eb4a4f8b72b4768bdb350cb27a6afa1 schema:issueNumber 1
    45 rdf:type schema:PublicationIssue
    46 N6963c41033cc4df9b6843b63d61ec258 schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 Na8e663e6868d4e6b864b1b4fbb1e0e3b schema:name doi
    49 schema:value 10.1007/s00181-015-1000-5
    50 rdf:type schema:PropertyValue
    51 Nbea13b28034c4b3f9c64ac805458c538 schema:name readcube_id
    52 schema:value 01e7af7947632176de31809464b412f6b45885aeb0e238a186b2e83350dd1d2c
    53 rdf:type schema:PropertyValue
    54 Ncce7013e11764ee4a9e249fa4eee9d5f rdf:first sg:person.012205366261.93
    55 rdf:rest rdf:nil
    56 Nf9c566900b0f408ca2995d86d3d19b8a schema:volumeNumber 51
    57 rdf:type schema:PublicationVolume
    58 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Economics
    60 rdf:type schema:DefinedTerm
    61 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Applied Economics
    63 rdf:type schema:DefinedTerm
    64 sg:journal.1027901 schema:issn 0377-7332
    65 1435-8921
    66 schema:name Empirical Economics
    67 rdf:type schema:Periodical
    68 sg:person.012205366261.93 schema:affiliation https://www.grid.ac/institutes/grid.435041.7
    69 schema:familyName Gundlach
    70 schema:givenName Erich
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012205366261.93
    72 rdf:type schema:Person
    73 sg:person.016715207710.39 schema:affiliation https://www.grid.ac/institutes/grid.9531.e
    74 schema:familyName Ditzen
    75 schema:givenName Jan
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016715207710.39
    77 rdf:type schema:Person
    78 sg:pub.10.1007/978-94-009-0137-7_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037739859
    79 https://doi.org/10.1007/978-94-009-0137-7_8
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1007/s10887-009-9040-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033005243
    82 https://doi.org/10.1007/s10887-009-9040-3
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1016/0304-4076(94)01644-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1016201632
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1016/j.csda.2004.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021111073
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1093/biomet/63.3.513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059418571
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1093/oep/53.3.541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059948641
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1111/j.1467-6419.2010.00624.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049674152
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1162/003355398555504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063349078
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1561/0800000011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068000538
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.2307/2118477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069768974
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.2307/2526223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069972335
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.2307/2946651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070143940
    103 rdf:type schema:CreativeWork
    104 https://www.grid.ac/institutes/grid.435041.7 schema:alternateName GIGA German Institute of Global and Area Studies
    105 schema:name Hamburg University and GIGA German Institute of Global and Area Studies, Hamburg, Germany
    106 rdf:type schema:Organization
    107 https://www.grid.ac/institutes/grid.9531.e schema:alternateName Heriot-Watt University
    108 schema:name Heriot-Watt University, Edinburgh, Scotland, UK
    109 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...