Optimum mechanism for breaking the confounding effects of mixed-level designs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06

AUTHORS

A. M. Elsawah, Hong Qin

ABSTRACT

Fractional factorial designs (FFD’s) are no doubt the most widely used designs in the experimental investigations due to their efficient use of experimental runs to study many factors simultaneously. One consequence of using FFD’s is the aliasing of factorial effects. Follow-up experiments may be needed to break the confounding. A simple strategy is to add a foldover of the initial design, the new fraction is called a foldover design. Combining a foldover design with the original design converts a design of resolution r into a combined design of resolution r+1. In this paper, we take the centered L2-discrepancy (CD) as the optimality measure to construct the optimal combined design and take asymmetrical factorials with mixed two and three levels, which are most commonly used in practice, as the original designs. New and efficient analytical expressions based on the row distance of the CD for combined designs are obtained. Based on these new formulations, we present new and efficient lower bounds of the CD. Using the new formulations and lower bounds as the benchmarks, we may implement a new algorithm for constructing optimal mixed-level combined designs. By this search heuristic, we may obtain mixed-level combined designs with low discrepancy. More... »

PAGES

781-802

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00180-016-0651-9

DOI

http://dx.doi.org/10.1007/s00180-016-0651-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002994436


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "United International College", 
          "id": "https://www.grid.ac/institutes/grid.469245.8", 
          "name": [
            "Faculty of Mathematics and Statistics, Central China Normal University, 430079, Wuhan, China", 
            "Department of Mathematics, Faculty of Science, Zagazig University, 44519, Zagazig, Egypt", 
            "Division of Science and Technology, BNU-HKBU United International College, 519085, Zhuhai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elsawah", 
        "givenName": "A. M.", 
        "id": "sg:person.07600162107.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07600162107.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central China Normal University", 
          "id": "https://www.grid.ac/institutes/grid.411407.7", 
          "name": [
            "Faculty of Mathematics and Statistics, Central China Normal University, 430079, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qin", 
        "givenName": "Hong", 
        "id": "sg:person.013423334123.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013423334123.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jspi.2009.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003297805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02664763.2016.1140727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005666844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-7152(03)00008-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006843028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-7152(03)00008-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006843028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jkss.2015.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020421668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spl.2014.09.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024130632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spl.2015.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024869855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00362-006-0350-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025751948", 
          "https://doi.org/10.1007/s00362-006-0350-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00362-006-0350-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025751948", 
          "https://doi.org/10.1007/s00362-006-0350-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jspi.2014.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026505527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10114-016-4749-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035601121", 
          "https://doi.org/10.1007/s10114-016-4749-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spl.2015.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036842410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spl.2014.06.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049437210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03610926.2013.776082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058330268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03610926.2015.1024862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058331047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/87.1.173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059420990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/87.1.193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059420992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/004017003188618779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197530"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06", 
    "datePublishedReg": "2017-06-01", 
    "description": "Fractional factorial designs (FFD\u2019s) are no doubt the most widely used designs in the experimental investigations due to their efficient use of experimental runs to study many factors simultaneously. One consequence of using FFD\u2019s is the aliasing of factorial effects. Follow-up experiments may be needed to break the confounding. A simple strategy is to add a foldover of the initial design, the new fraction is called a foldover design. Combining a foldover design with the original design converts a design of resolution r into a combined design of resolution r+1. In this paper, we take the centered L2-discrepancy (CD) as the optimality measure to construct the optimal combined design and take asymmetrical factorials with mixed two and three levels, which are most commonly used in practice, as the original designs. New and efficient analytical expressions based on the row distance of the CD for combined designs are obtained. Based on these new formulations, we present new and efficient lower bounds of the CD. Using the new formulations and lower bounds as the benchmarks, we may implement a new algorithm for constructing optimal mixed-level combined designs. By this search heuristic, we may obtain mixed-level combined designs with low discrepancy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00180-016-0651-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7175654", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1038958", 
        "issn": [
          "0943-4062", 
          "1613-9658"
        ], 
        "name": "Computational Statistics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "Optimum mechanism for breaking the confounding effects of mixed-level designs", 
    "pagination": "781-802", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0e42be2854119d39c36fcb2bcef93d36d177a19f000221e1319a2922a988476c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00180-016-0651-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002994436"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00180-016-0651-9", 
      "https://app.dimensions.ai/details/publication/pub.1002994436"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000579.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00180-016-0651-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00180-016-0651-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00180-016-0651-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00180-016-0651-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00180-016-0651-9'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00180-016-0651-9 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N7e3f21dd68f44ed389b768feb5ca1a63
4 schema:citation sg:pub.10.1007/s00362-006-0350-7
5 sg:pub.10.1007/s10114-016-4749-3
6 https://doi.org/10.1016/j.jkss.2015.07.004
7 https://doi.org/10.1016/j.jspi.2009.12.011
8 https://doi.org/10.1016/j.jspi.2014.12.007
9 https://doi.org/10.1016/j.spl.2014.06.008
10 https://doi.org/10.1016/j.spl.2014.09.027
11 https://doi.org/10.1016/j.spl.2015.04.020
12 https://doi.org/10.1016/j.spl.2015.05.007
13 https://doi.org/10.1016/s0167-7152(03)00008-7
14 https://doi.org/10.1080/02664763.2016.1140727
15 https://doi.org/10.1080/03610926.2013.776082
16 https://doi.org/10.1080/03610926.2015.1024862
17 https://doi.org/10.1093/biomet/87.1.173
18 https://doi.org/10.1093/biomet/87.1.193
19 https://doi.org/10.1198/004017003188618779
20 schema:datePublished 2017-06
21 schema:datePublishedReg 2017-06-01
22 schema:description Fractional factorial designs (FFD’s) are no doubt the most widely used designs in the experimental investigations due to their efficient use of experimental runs to study many factors simultaneously. One consequence of using FFD’s is the aliasing of factorial effects. Follow-up experiments may be needed to break the confounding. A simple strategy is to add a foldover of the initial design, the new fraction is called a foldover design. Combining a foldover design with the original design converts a design of resolution r into a combined design of resolution r+1. In this paper, we take the centered L2-discrepancy (CD) as the optimality measure to construct the optimal combined design and take asymmetrical factorials with mixed two and three levels, which are most commonly used in practice, as the original designs. New and efficient analytical expressions based on the row distance of the CD for combined designs are obtained. Based on these new formulations, we present new and efficient lower bounds of the CD. Using the new formulations and lower bounds as the benchmarks, we may implement a new algorithm for constructing optimal mixed-level combined designs. By this search heuristic, we may obtain mixed-level combined designs with low discrepancy.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf Nb12e710bc9e84fe085127c5e9a514bd3
27 Nba810125f3a94d47896b454ea451a990
28 sg:journal.1038958
29 schema:name Optimum mechanism for breaking the confounding effects of mixed-level designs
30 schema:pagination 781-802
31 schema:productId N15b2b25b02064f1d8e3987829d725952
32 N471aa8cadf31433798e7b783ace2159a
33 Nd8678212c1274243a18670b84ea36fb6
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002994436
35 https://doi.org/10.1007/s00180-016-0651-9
36 schema:sdDatePublished 2019-04-10T13:28
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N95c98b4c6b38412c92ba1c53928d09d6
39 schema:url http://link.springer.com/10.1007%2Fs00180-016-0651-9
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N15b2b25b02064f1d8e3987829d725952 schema:name doi
44 schema:value 10.1007/s00180-016-0651-9
45 rdf:type schema:PropertyValue
46 N471aa8cadf31433798e7b783ace2159a schema:name readcube_id
47 schema:value 0e42be2854119d39c36fcb2bcef93d36d177a19f000221e1319a2922a988476c
48 rdf:type schema:PropertyValue
49 N4b70ed65c3a94eecb39e8d3e0511cd7f rdf:first sg:person.013423334123.53
50 rdf:rest rdf:nil
51 N7e3f21dd68f44ed389b768feb5ca1a63 rdf:first sg:person.07600162107.37
52 rdf:rest N4b70ed65c3a94eecb39e8d3e0511cd7f
53 N95c98b4c6b38412c92ba1c53928d09d6 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Nb12e710bc9e84fe085127c5e9a514bd3 schema:volumeNumber 32
56 rdf:type schema:PublicationVolume
57 Nba810125f3a94d47896b454ea451a990 schema:issueNumber 2
58 rdf:type schema:PublicationIssue
59 Nd8678212c1274243a18670b84ea36fb6 schema:name dimensions_id
60 schema:value pub.1002994436
61 rdf:type schema:PropertyValue
62 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
63 schema:name Information and Computing Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
66 schema:name Computation Theory and Mathematics
67 rdf:type schema:DefinedTerm
68 sg:grant.7175654 http://pending.schema.org/fundedItem sg:pub.10.1007/s00180-016-0651-9
69 rdf:type schema:MonetaryGrant
70 sg:journal.1038958 schema:issn 0943-4062
71 1613-9658
72 schema:name Computational Statistics
73 rdf:type schema:Periodical
74 sg:person.013423334123.53 schema:affiliation https://www.grid.ac/institutes/grid.411407.7
75 schema:familyName Qin
76 schema:givenName Hong
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013423334123.53
78 rdf:type schema:Person
79 sg:person.07600162107.37 schema:affiliation https://www.grid.ac/institutes/grid.469245.8
80 schema:familyName Elsawah
81 schema:givenName A. M.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07600162107.37
83 rdf:type schema:Person
84 sg:pub.10.1007/s00362-006-0350-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025751948
85 https://doi.org/10.1007/s00362-006-0350-7
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s10114-016-4749-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035601121
88 https://doi.org/10.1007/s10114-016-4749-3
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.jkss.2015.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020421668
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.jspi.2009.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003297805
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.jspi.2014.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026505527
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.spl.2014.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049437210
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.spl.2014.09.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024130632
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.spl.2015.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036842410
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.spl.2015.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024869855
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/s0167-7152(03)00008-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006843028
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1080/02664763.2016.1140727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005666844
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1080/03610926.2013.776082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058330268
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1080/03610926.2015.1024862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058331047
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1093/biomet/87.1.173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420990
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1093/biomet/87.1.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420992
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1198/004017003188618779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197530
117 rdf:type schema:CreativeWork
118 https://www.grid.ac/institutes/grid.411407.7 schema:alternateName Central China Normal University
119 schema:name Faculty of Mathematics and Statistics, Central China Normal University, 430079, Wuhan, China
120 rdf:type schema:Organization
121 https://www.grid.ac/institutes/grid.469245.8 schema:alternateName United International College
122 schema:name Department of Mathematics, Faculty of Science, Zagazig University, 44519, Zagazig, Egypt
123 Division of Science and Technology, BNU-HKBU United International College, 519085, Zhuhai, China
124 Faculty of Mathematics and Statistics, Central China Normal University, 430079, Wuhan, China
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...