Semiparametric stochastic volatility modelling using penalized splines View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-06

AUTHORS

Roland Langrock, Théo Michelot, Alexander Sohn, Thomas Kneib

ABSTRACT

Stochastic volatility (SV) models mimic many of the stylized facts attributed to time series of asset returns, while maintaining conceptual simplicity. The commonly made assumption of conditionally normally distributed or Student-t-distributed returns, given the volatility, has however been questioned. In this manuscript, we introduce a novel maximum penalized likelihood approach for estimating the conditional distribution in an SV model in a nonparametric way, thus avoiding any potentially critical assumptions on the shape. The considered framework exploits the strengths both of the hidden Markov model machinery and of penalized B-splines, and constitutes a powerful alternative to recently developed Bayesian approaches to semiparametric SV modelling. We demonstrate the feasibility of the approach in a simulation study before outlining its potential in applications to three series of returns on stocks and one series of stock index returns. More... »

PAGES

517-537

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00180-014-0547-5

DOI

http://dx.doi.org/10.1007/s00180-014-0547-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033711690


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of St Andrews", 
          "id": "https://www.grid.ac/institutes/grid.11914.3c", 
          "name": [
            "University of St Andrews, St Andrews, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langrock", 
        "givenName": "Roland", 
        "id": "sg:person.01001544430.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001544430.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut National des Sciences Appliqu\u00e9es de Rouen", 
          "id": "https://www.grid.ac/institutes/grid.435013.0", 
          "name": [
            "INSA de Rouen, Rouen, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Michelot", 
        "givenName": "Th\u00e9o", 
        "id": "sg:person.01103507725.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103507725.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Georg August University of G\u00f6ttingen, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sohn", 
        "givenName": "Alexander", 
        "id": "sg:person.01203645125.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203645125.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Georg August University of G\u00f6ttingen, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kneib", 
        "givenName": "Thomas", 
        "id": "sg:person.01272020411.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/for.982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002124567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/for.982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002124567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2010.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003465545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02664763.2011.573543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004567038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/713665670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009326542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-4076(01)00137-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010946745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2010.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012988974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2009.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014332741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-4076(00)00030-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014828922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2011.12.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020904604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(02)00215-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022269669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(02)00215-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022269669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/11-ba632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022715005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/biom.12282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023692168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2005.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027242055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2005.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027242055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2003.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029769356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00180-011-0289-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038832640", 
          "https://doi.org/10.1007/s00180-011-0289-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asmb.426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039795160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1038425655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041521657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-4076(97)00039-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041824026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2012.10.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045862010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jempfin.2011.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048149809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-1889(02)00079-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049068064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420010893.ch2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050460234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/0022-1082.00247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051309931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-937x.00050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061835012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214506000001437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/106186002853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064199348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/106186008x287328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064199616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/09-ss054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064391087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/13-aoas644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064393666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177729394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064401673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-2879-5_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089745766", 
          "https://doi.org/10.1007/978-1-4899-2879-5_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511755453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098667268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109725086", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420010893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109725086"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-06", 
    "datePublishedReg": "2015-06-01", 
    "description": "Stochastic volatility (SV) models mimic many of the stylized facts attributed to time series of asset returns, while maintaining conceptual simplicity. The commonly made assumption of conditionally normally distributed or Student-t-distributed returns, given the volatility, has however been questioned. In this manuscript, we introduce a novel maximum penalized likelihood approach for estimating the conditional distribution in an SV model in a nonparametric way, thus avoiding any potentially critical assumptions on the shape. The considered framework exploits the strengths both of the hidden Markov model machinery and of penalized B-splines, and constitutes a powerful alternative to recently developed Bayesian approaches to semiparametric SV modelling. We demonstrate the feasibility of the approach in a simulation study before outlining its potential in applications to three series of returns on stocks and one series of stock index returns.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00180-014-0547-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1038958", 
        "issn": [
          "0943-4062", 
          "1613-9658"
        ], 
        "name": "Computational Statistics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "name": "Semiparametric stochastic volatility modelling using penalized splines", 
    "pagination": "517-537", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a0978d76f72be4be76519f1bd6d2206662aed59539a2322bd66a3d80b30cb956"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00180-014-0547-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033711690"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00180-014-0547-5", 
      "https://app.dimensions.ai/details/publication/pub.1033711690"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000590.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00180-014-0547-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00180-014-0547-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00180-014-0547-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00180-014-0547-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00180-014-0547-5'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00180-014-0547-5 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Na94bb41b241e45f88aacc75d6643f3f7
4 schema:citation sg:pub.10.1007/978-1-4899-2879-5_1
5 sg:pub.10.1007/s00180-011-0289-6
6 https://app.dimensions.ai/details/publication/pub.1109725086
7 https://doi.org/10.1002/asmb.426
8 https://doi.org/10.1002/for.982
9 https://doi.org/10.1016/j.csda.2009.06.011
10 https://doi.org/10.1016/j.csda.2010.07.012
11 https://doi.org/10.1016/j.csda.2012.10.023
12 https://doi.org/10.1016/j.ins.2011.12.028
13 https://doi.org/10.1016/j.jeconom.2003.09.001
14 https://doi.org/10.1016/j.jeconom.2005.03.016
15 https://doi.org/10.1016/j.jeconom.2010.01.014
16 https://doi.org/10.1016/j.jempfin.2011.09.003
17 https://doi.org/10.1016/s0165-1889(02)00079-9
18 https://doi.org/10.1016/s0167-9473(02)00215-3
19 https://doi.org/10.1016/s0304-4076(00)00030-0
20 https://doi.org/10.1016/s0304-4076(01)00137-3
21 https://doi.org/10.1016/s0304-4076(97)00039-0
22 https://doi.org/10.1017/cbo9780511755453
23 https://doi.org/10.1080/02664763.2011.573543
24 https://doi.org/10.1080/713665670
25 https://doi.org/10.1111/0022-1082.00247
26 https://doi.org/10.1111/1467-937x.00050
27 https://doi.org/10.1111/biom.12282
28 https://doi.org/10.1198/016214506000001437
29 https://doi.org/10.1198/106186002853
30 https://doi.org/10.1198/106186008x287328
31 https://doi.org/10.1201/9781420010893
32 https://doi.org/10.1201/9781420010893.ch2
33 https://doi.org/10.1214/09-ss054
34 https://doi.org/10.1214/11-ba632
35 https://doi.org/10.1214/13-aoas644
36 https://doi.org/10.1214/aoms/1177729394
37 https://doi.org/10.1214/ss/1038425655
38 schema:datePublished 2015-06
39 schema:datePublishedReg 2015-06-01
40 schema:description Stochastic volatility (SV) models mimic many of the stylized facts attributed to time series of asset returns, while maintaining conceptual simplicity. The commonly made assumption of conditionally normally distributed or Student-t-distributed returns, given the volatility, has however been questioned. In this manuscript, we introduce a novel maximum penalized likelihood approach for estimating the conditional distribution in an SV model in a nonparametric way, thus avoiding any potentially critical assumptions on the shape. The considered framework exploits the strengths both of the hidden Markov model machinery and of penalized B-splines, and constitutes a powerful alternative to recently developed Bayesian approaches to semiparametric SV modelling. We demonstrate the feasibility of the approach in a simulation study before outlining its potential in applications to three series of returns on stocks and one series of stock index returns.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N313e1d734d5448e4922d1b3efb391abd
45 N7d2e5496e8ff4b3ab4a6eda7894238f1
46 sg:journal.1038958
47 schema:name Semiparametric stochastic volatility modelling using penalized splines
48 schema:pagination 517-537
49 schema:productId N6ff7d3c73d844c91b49b0d617f35f210
50 Na5abe8b84a5a49b88823c0c12f1587cb
51 Ncc8e19edee1341259e203b3da83d572f
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033711690
53 https://doi.org/10.1007/s00180-014-0547-5
54 schema:sdDatePublished 2019-04-10T20:09
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nb540d3f10fa040c4983874115c0a0c6a
57 schema:url http://link.springer.com/10.1007%2Fs00180-014-0547-5
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N04cf5b1b129b497ea61216f5d5c92956 rdf:first sg:person.01272020411.15
62 rdf:rest rdf:nil
63 N313e1d734d5448e4922d1b3efb391abd schema:issueNumber 2
64 rdf:type schema:PublicationIssue
65 N5ea58992f6f6415197225f8ddf88da3c rdf:first sg:person.01103507725.12
66 rdf:rest Ndeaece67a9134b20a424c3f21f8ad62c
67 N6ff7d3c73d844c91b49b0d617f35f210 schema:name dimensions_id
68 schema:value pub.1033711690
69 rdf:type schema:PropertyValue
70 N7d2e5496e8ff4b3ab4a6eda7894238f1 schema:volumeNumber 30
71 rdf:type schema:PublicationVolume
72 Na5abe8b84a5a49b88823c0c12f1587cb schema:name doi
73 schema:value 10.1007/s00180-014-0547-5
74 rdf:type schema:PropertyValue
75 Na94bb41b241e45f88aacc75d6643f3f7 rdf:first sg:person.01001544430.24
76 rdf:rest N5ea58992f6f6415197225f8ddf88da3c
77 Nb540d3f10fa040c4983874115c0a0c6a schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Ncc8e19edee1341259e203b3da83d572f schema:name readcube_id
80 schema:value a0978d76f72be4be76519f1bd6d2206662aed59539a2322bd66a3d80b30cb956
81 rdf:type schema:PropertyValue
82 Ndeaece67a9134b20a424c3f21f8ad62c rdf:first sg:person.01203645125.06
83 rdf:rest N04cf5b1b129b497ea61216f5d5c92956
84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
85 schema:name Mathematical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
88 schema:name Statistics
89 rdf:type schema:DefinedTerm
90 sg:journal.1038958 schema:issn 0943-4062
91 1613-9658
92 schema:name Computational Statistics
93 rdf:type schema:Periodical
94 sg:person.01001544430.24 schema:affiliation https://www.grid.ac/institutes/grid.11914.3c
95 schema:familyName Langrock
96 schema:givenName Roland
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001544430.24
98 rdf:type schema:Person
99 sg:person.01103507725.12 schema:affiliation https://www.grid.ac/institutes/grid.435013.0
100 schema:familyName Michelot
101 schema:givenName Théo
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103507725.12
103 rdf:type schema:Person
104 sg:person.01203645125.06 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
105 schema:familyName Sohn
106 schema:givenName Alexander
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203645125.06
108 rdf:type schema:Person
109 sg:person.01272020411.15 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
110 schema:familyName Kneib
111 schema:givenName Thomas
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15
113 rdf:type schema:Person
114 sg:pub.10.1007/978-1-4899-2879-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089745766
115 https://doi.org/10.1007/978-1-4899-2879-5_1
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00180-011-0289-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038832640
118 https://doi.org/10.1007/s00180-011-0289-6
119 rdf:type schema:CreativeWork
120 https://app.dimensions.ai/details/publication/pub.1109725086 schema:CreativeWork
121 https://doi.org/10.1002/asmb.426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039795160
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/for.982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002124567
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.csda.2009.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014332741
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.csda.2010.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012988974
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.csda.2012.10.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045862010
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.ins.2011.12.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020904604
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.jeconom.2003.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029769356
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.jeconom.2005.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027242055
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.jeconom.2010.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003465545
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.jempfin.2011.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048149809
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0165-1889(02)00079-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049068064
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0167-9473(02)00215-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022269669
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0304-4076(00)00030-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014828922
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0304-4076(01)00137-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010946745
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s0304-4076(97)00039-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041824026
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1017/cbo9780511755453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667268
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1080/02664763.2011.573543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004567038
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1080/713665670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009326542
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1111/0022-1082.00247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051309931
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1111/1467-937x.00050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061835012
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1111/biom.12282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023692168
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1198/016214506000001437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198608
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1198/106186002853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199348
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1198/106186008x287328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199616
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1201/9781420010893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109725086
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1201/9781420010893.ch2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050460234
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1214/09-ss054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064391087
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1214/11-ba632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022715005
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1214/13-aoas644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064393666
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1214/aoms/1177729394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064401673
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1214/ss/1038425655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041521657
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.11914.3c schema:alternateName University of St Andrews
184 schema:name University of St Andrews, St Andrews, UK
185 rdf:type schema:Organization
186 https://www.grid.ac/institutes/grid.435013.0 schema:alternateName Institut National des Sciences Appliquées de Rouen
187 schema:name INSA de Rouen, Rouen, France
188 rdf:type schema:Organization
189 https://www.grid.ac/institutes/grid.7450.6 schema:alternateName University of Göttingen
190 schema:name Georg August University of Göttingen, Göttingen, Germany
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...