Variable selection and model choice in structured survival models View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-06

AUTHORS

Benjamin Hofner, Torsten Hothorn, Thomas Kneib

ABSTRACT

We aim at modeling the survival time of intensive care patients suffering from severe sepsis. The nature of the problem requires a flexible model that allows to extend the classical Cox-model via the inclusion of time-varying and nonparametric effects. These structured survival models are very flexible but additional difficulties arise when model choice and variable selection are desired. In particular, it has to be decided which covariates should be assigned time-varying effects or whether linear modeling is sufficient for a given covariate. Component-wise boosting provides a means of likelihood-based model fitting that enables simultaneous variable selection and model choice. We introduce a component-wise, likelihood-based boosting algorithm for survival data that permits the inclusion of both parametric and nonparametric time-varying effects as well as nonparametric effects of continuous covariates utilizing penalized splines as the main modeling technique. An empirical evaluation of the methodology precedes the model building for the severe sepsis data. A software implementation is available to the interested reader. More... »

PAGES

1079-1101

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00180-012-0337-x

DOI

http://dx.doi.org/10.1007/s00180-012-0337-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022087125


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Erlangen-Nuremberg", 
          "id": "https://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Institut f\u00fcr Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universit\u00e4t Erlangen-N\u00fcrnberg, Waldstra\u00dfe 6, 91054, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hofner", 
        "givenName": "Benjamin", 
        "id": "sg:person.01044432226.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044432226.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Institut f\u00fcr Statistik, Ludwig-Maximilians-Universit\u00e4t, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hothorn", 
        "givenName": "Torsten", 
        "id": "sg:person.0637301571.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637301571.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Institut f\u00fcr Statistik und \u00d6konometrie, Georg-August-Universit\u00e4t, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kneib", 
        "givenName": "Thomas", 
        "id": "sg:person.01272020411.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2010.00740.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000696823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2010.00740.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000696823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/shk.0b013e318164ccfd", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005340809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/shk.0b013e318164ccfd", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005340809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2008.01112.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018081846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021204892", 
          "https://doi.org/10.1007/b98890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021204892", 
          "https://doi.org/10.1007/b98890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021204892", 
          "https://doi.org/10.1007/b98890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/shk.0b013e31817d3e14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022407718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/shk.0b013e31817d3e14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022407718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1023222883", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3294-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023222883", 
          "https://doi.org/10.1007/978-1-4757-3294-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3294-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023222883", 
          "https://doi.org/10.1007/978-1-4757-3294-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/shk.0b013e31803df84d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026490344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/shk.0b013e31803df84d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026490344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030260403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030260403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1013203451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030645893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034538282", 
          "https://doi.org/10.1186/1471-2105-9-14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2006.00578.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034783717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034949131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjsurg.2006.12.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036733498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1038425655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041521657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bimj.200610328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042576109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2008.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047435658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/07-sts242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049744920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9469.2006.00524.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050289937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1992.10476248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1471082x1001100102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064025765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1471082x1001100102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064025765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214503000125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/jcgs.2011.09220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064201123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/07-sts242a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064389912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1032181158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176347503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3414/me11-02-0030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071312140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2986270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101983581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2986270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101983581"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-06", 
    "datePublishedReg": "2013-06-01", 
    "description": "We aim at modeling the survival time of intensive care patients suffering from severe sepsis. The nature of the problem requires a flexible model that allows to extend the classical Cox-model via the inclusion of time-varying and nonparametric effects. These structured survival models are very flexible but additional difficulties arise when model choice and variable selection are desired. In particular, it has to be decided which covariates should be assigned time-varying effects or whether linear modeling is sufficient for a given covariate. Component-wise boosting provides a means of likelihood-based model fitting that enables simultaneous variable selection and model choice. We introduce a component-wise, likelihood-based boosting algorithm for survival data that permits the inclusion of both parametric and nonparametric time-varying effects as well as nonparametric effects of continuous covariates utilizing penalized splines as the main modeling technique. An empirical evaluation of the methodology precedes the model building for the severe sepsis data. A software implementation is available to the interested reader.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00180-012-0337-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1038958", 
        "issn": [
          "0943-4062", 
          "1613-9658"
        ], 
        "name": "Computational Statistics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Variable selection and model choice in structured survival models", 
    "pagination": "1079-1101", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "693a635ee522cb5096b8689e28b35967bef8433f9db6ab1ff67db4677c27d3ac"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00180-012-0337-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022087125"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00180-012-0337-x", 
      "https://app.dimensions.ai/details/publication/pub.1022087125"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00180-012-0337-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00180-012-0337-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00180-012-0337-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00180-012-0337-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00180-012-0337-x'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00180-012-0337-x schema:about anzsrc-for:14
2 anzsrc-for:1403
3 schema:author Nef3760f8d5754242b60601c2845adf7e
4 schema:citation sg:pub.10.1007/978-1-4757-3294-8
5 sg:pub.10.1007/b98890
6 sg:pub.10.1186/1471-2105-9-14
7 https://app.dimensions.ai/details/publication/pub.1023222883
8 https://doi.org/10.1002/bimj.200610328
9 https://doi.org/10.1002/sim.2059
10 https://doi.org/10.1002/sim.2519
11 https://doi.org/10.1016/j.amjsurg.2006.12.043
12 https://doi.org/10.1016/j.csda.2008.09.009
13 https://doi.org/10.1080/01621459.1992.10476248
14 https://doi.org/10.1097/shk.0b013e31803df84d
15 https://doi.org/10.1097/shk.0b013e318164ccfd
16 https://doi.org/10.1097/shk.0b013e31817d3e14
17 https://doi.org/10.1111/j.1467-9469.2006.00524.x
18 https://doi.org/10.1111/j.1467-9868.2010.00740.x
19 https://doi.org/10.1111/j.1541-0420.2006.00578.x
20 https://doi.org/10.1111/j.1541-0420.2008.01112.x
21 https://doi.org/10.1177/1471082x1001100102
22 https://doi.org/10.1198/016214503000125
23 https://doi.org/10.1198/jcgs.2011.09220
24 https://doi.org/10.1214/07-sts242
25 https://doi.org/10.1214/07-sts242a
26 https://doi.org/10.1214/aos/1013203451
27 https://doi.org/10.1214/aos/1032181158
28 https://doi.org/10.1214/aos/1176347503
29 https://doi.org/10.1214/ss/1038425655
30 https://doi.org/10.2307/2986270
31 https://doi.org/10.3414/me11-02-0030
32 schema:datePublished 2013-06
33 schema:datePublishedReg 2013-06-01
34 schema:description We aim at modeling the survival time of intensive care patients suffering from severe sepsis. The nature of the problem requires a flexible model that allows to extend the classical Cox-model via the inclusion of time-varying and nonparametric effects. These structured survival models are very flexible but additional difficulties arise when model choice and variable selection are desired. In particular, it has to be decided which covariates should be assigned time-varying effects or whether linear modeling is sufficient for a given covariate. Component-wise boosting provides a means of likelihood-based model fitting that enables simultaneous variable selection and model choice. We introduce a component-wise, likelihood-based boosting algorithm for survival data that permits the inclusion of both parametric and nonparametric time-varying effects as well as nonparametric effects of continuous covariates utilizing penalized splines as the main modeling technique. An empirical evaluation of the methodology precedes the model building for the severe sepsis data. A software implementation is available to the interested reader.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N63e590fd96a94af08f606ce10e60d570
39 Na4b4b63b8a6c4bd09b65bdd224d204da
40 sg:journal.1038958
41 schema:name Variable selection and model choice in structured survival models
42 schema:pagination 1079-1101
43 schema:productId Na7ec9b4009394c1fa45e97c18610f894
44 Nc72a1af75ff54946a6961a01311db134
45 Neaeed23266b14cac93e8473afa5e9ced
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022087125
47 https://doi.org/10.1007/s00180-012-0337-x
48 schema:sdDatePublished 2019-04-11T02:00
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N2c4c9aca64d04e098ad9adcecdc5e658
51 schema:url http://link.springer.com/10.1007%2Fs00180-012-0337-x
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N2c4c9aca64d04e098ad9adcecdc5e658 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N5e6b177a174a43a3a8b9401d6a62a573 rdf:first sg:person.0637301571.01
58 rdf:rest Na76668e3a48a49679dee376866f0ea51
59 N63e590fd96a94af08f606ce10e60d570 schema:issueNumber 3
60 rdf:type schema:PublicationIssue
61 Na4b4b63b8a6c4bd09b65bdd224d204da schema:volumeNumber 28
62 rdf:type schema:PublicationVolume
63 Na76668e3a48a49679dee376866f0ea51 rdf:first sg:person.01272020411.15
64 rdf:rest rdf:nil
65 Na7ec9b4009394c1fa45e97c18610f894 schema:name doi
66 schema:value 10.1007/s00180-012-0337-x
67 rdf:type schema:PropertyValue
68 Nc72a1af75ff54946a6961a01311db134 schema:name readcube_id
69 schema:value 693a635ee522cb5096b8689e28b35967bef8433f9db6ab1ff67db4677c27d3ac
70 rdf:type schema:PropertyValue
71 Neaeed23266b14cac93e8473afa5e9ced schema:name dimensions_id
72 schema:value pub.1022087125
73 rdf:type schema:PropertyValue
74 Nef3760f8d5754242b60601c2845adf7e rdf:first sg:person.01044432226.13
75 rdf:rest N5e6b177a174a43a3a8b9401d6a62a573
76 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
77 schema:name Economics
78 rdf:type schema:DefinedTerm
79 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
80 schema:name Econometrics
81 rdf:type schema:DefinedTerm
82 sg:journal.1038958 schema:issn 0943-4062
83 1613-9658
84 schema:name Computational Statistics
85 rdf:type schema:Periodical
86 sg:person.01044432226.13 schema:affiliation https://www.grid.ac/institutes/grid.5330.5
87 schema:familyName Hofner
88 schema:givenName Benjamin
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044432226.13
90 rdf:type schema:Person
91 sg:person.01272020411.15 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
92 schema:familyName Kneib
93 schema:givenName Thomas
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15
95 rdf:type schema:Person
96 sg:person.0637301571.01 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
97 schema:familyName Hothorn
98 schema:givenName Torsten
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637301571.01
100 rdf:type schema:Person
101 sg:pub.10.1007/978-1-4757-3294-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023222883
102 https://doi.org/10.1007/978-1-4757-3294-8
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/b98890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021204892
105 https://doi.org/10.1007/b98890
106 rdf:type schema:CreativeWork
107 sg:pub.10.1186/1471-2105-9-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034538282
108 https://doi.org/10.1186/1471-2105-9-14
109 rdf:type schema:CreativeWork
110 https://app.dimensions.ai/details/publication/pub.1023222883 schema:CreativeWork
111 https://doi.org/10.1002/bimj.200610328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042576109
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1002/sim.2059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034949131
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/sim.2519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030260403
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.amjsurg.2006.12.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036733498
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.csda.2008.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047435658
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1080/01621459.1992.10476248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304332
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1097/shk.0b013e31803df84d schema:sameAs https://app.dimensions.ai/details/publication/pub.1026490344
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1097/shk.0b013e318164ccfd schema:sameAs https://app.dimensions.ai/details/publication/pub.1005340809
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1097/shk.0b013e31817d3e14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022407718
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1111/j.1467-9469.2006.00524.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050289937
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1111/j.1467-9868.2010.00740.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000696823
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1111/j.1541-0420.2006.00578.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034783717
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1111/j.1541-0420.2008.01112.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018081846
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1177/1471082x1001100102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064025765
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1198/016214503000125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198102
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1198/jcgs.2011.09220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064201123
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1214/07-sts242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049744920
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1214/07-sts242a schema:sameAs https://app.dimensions.ai/details/publication/pub.1064389912
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1214/aos/1013203451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030645893
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1214/aos/1032181158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406216
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1214/aos/1176347503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408379
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1214/ss/1038425655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041521657
154 rdf:type schema:CreativeWork
155 https://doi.org/10.2307/2986270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101983581
156 rdf:type schema:CreativeWork
157 https://doi.org/10.3414/me11-02-0030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071312140
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
160 schema:name Institut für Statistik, Ludwig-Maximilians-Universität, München, Germany
161 rdf:type schema:Organization
162 https://www.grid.ac/institutes/grid.5330.5 schema:alternateName University of Erlangen-Nuremberg
163 schema:name Institut für Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054, Erlangen, Germany
164 rdf:type schema:Organization
165 https://www.grid.ac/institutes/grid.7450.6 schema:alternateName University of Göttingen
166 schema:name Institut für Statistik und Ökonometrie, Georg-August-Universität, Göttingen, Germany
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...