Selective association rule generation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-04

AUTHORS

Michael Hahsler, Christian Buchta, Kurt Hornik

ABSTRACT

Mining association rules is a popular and well researched method for discovering interesting relations between variables in large databases. A practical problem is that at medium to low support values often a large number of frequent itemsets and an even larger number of association rules are found in a database. A widely used approach is to gradually increase minimum support and minimum confidence or to filter the found rules using increasingly strict constraints on additional measures of interestingness until the set of rules found is reduced to a manageable size. In this paper we describe a different approach which is based on the idea to first define a set of “interesting” itemsets (e.g., by a mixture of mining and expert knowledge) and then, in a second step to selectively generate rules for only these itemsets. The main advantage of this approach over increasing thresholds or filtering rules is that the number of rules found is significantly reduced while at the same time it is not necessary to increase the support and confidence thresholds which might lead to missing important information in the database. More... »

PAGES

303-315

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00180-007-0062-z

DOI

http://dx.doi.org/10.1007/s00180-007-0062-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048996281


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Vienna University of Economics and Business", 
          "id": "https://www.grid.ac/institutes/grid.15788.33", 
          "name": [
            "Department of Information Systems and Operations, Institut f\u00fcr Informationswirtschaft, Wirtschaftsuniversit\u00e4t Wien, Augasse 2-6, 1090, Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hahsler", 
        "givenName": "Michael", 
        "id": "sg:person.01343724027.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343724027.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vienna University of Economics and Business", 
          "id": "https://www.grid.ac/institutes/grid.15788.33", 
          "name": [
            "Institute for Tourism and Leisure Studies, Wirtschaftsuniversit\u00e4t Wien, Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buchta", 
        "givenName": "Christian", 
        "id": "sg:person.010226707557.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010226707557.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vienna University of Economics and Business", 
          "id": "https://www.grid.ac/institutes/grid.15788.33", 
          "name": [
            "Department of Statistics and Mathematics, Wirtschaftsuniversit\u00e4t Wien, Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hornik", 
        "givenName": "Kurt", 
        "id": "sg:person.01355621653.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355621653.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/b:dami.0000040429.96086.c7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001948553", 
          "https://doi.org/10.1023/b:dami.0000040429.96086.c7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/846183.846188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009189318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/380995.380999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018232547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0306-4379(03)00072-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020349998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0306-4379(03)00072-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020349998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/170035.170072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028726331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/380995.381033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030106472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/19.1.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033089428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1007730.1007744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033272278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-57489-4_59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036069151", 
          "https://doi.org/10.1007/978-3-642-57489-4_59"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-57489-4_59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036069151", 
          "https://doi.org/10.1007/978-3-642-57489-4_59"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-49257-7_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048579740", 
          "https://doi.org/10.1007/3-540-49257-7_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-49257-7_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048579740", 
          "https://doi.org/10.1007/3-540-49257-7_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009895914772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049595553", 
          "https://doi.org/10.1023/a:1009895914772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0057713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050461938", 
          "https://doi.org/10.1007/bfb0057713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1098-111x(200008)15:8<687::aid-int1>3.0.co;2-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050491285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/191246.191314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052019070"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-04", 
    "datePublishedReg": "2008-04-01", 
    "description": "Mining association rules is a popular and well researched method for discovering interesting relations between variables in large databases. A practical problem is that at medium to low support values often a large number of frequent itemsets and an even larger number of association rules are found in a database. A widely used approach is to gradually increase minimum support and minimum confidence or to filter the found rules using increasingly strict constraints on additional measures of interestingness until the set of rules found is reduced to a manageable size. In this paper we describe a different approach which is based on the idea to first define a set of \u201cinteresting\u201d itemsets (e.g., by a mixture of mining and expert knowledge) and then, in a second step to selectively generate rules for only these itemsets. The main advantage of this approach over increasing thresholds or filtering rules is that the number of rules found is significantly reduced while at the same time it is not necessary to increase the support and confidence thresholds which might lead to missing important information in the database.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00180-007-0062-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1038958", 
        "issn": [
          "0943-4062", 
          "1613-9658"
        ], 
        "name": "Computational Statistics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Selective association rule generation", 
    "pagination": "303-315", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e9691a39b75d41bbcb96fe9d4977a43a9fc6a2e7a9c3106850a6359ac513b8cb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00180-007-0062-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048996281"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00180-007-0062-z", 
      "https://app.dimensions.ai/details/publication/pub.1048996281"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13106_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00180-007-0062-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00180-007-0062-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00180-007-0062-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00180-007-0062-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00180-007-0062-z'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00180-007-0062-z schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N65b29560c9c3474ebdc40b880d5e5051
4 schema:citation sg:pub.10.1007/3-540-49257-7_25
5 sg:pub.10.1007/978-3-642-57489-4_59
6 sg:pub.10.1007/bfb0057713
7 sg:pub.10.1023/a:1009895914772
8 sg:pub.10.1023/b:dami.0000040429.96086.c7
9 https://doi.org/10.1002/1098-111x(200008)15:8<687::aid-int1>3.0.co;2-x
10 https://doi.org/10.1016/s0306-4379(03)00072-3
11 https://doi.org/10.1093/bioinformatics/19.1.79
12 https://doi.org/10.1145/1007730.1007744
13 https://doi.org/10.1145/170035.170072
14 https://doi.org/10.1145/191246.191314
15 https://doi.org/10.1145/380995.380999
16 https://doi.org/10.1145/380995.381033
17 https://doi.org/10.1145/846183.846188
18 schema:datePublished 2008-04
19 schema:datePublishedReg 2008-04-01
20 schema:description Mining association rules is a popular and well researched method for discovering interesting relations between variables in large databases. A practical problem is that at medium to low support values often a large number of frequent itemsets and an even larger number of association rules are found in a database. A widely used approach is to gradually increase minimum support and minimum confidence or to filter the found rules using increasingly strict constraints on additional measures of interestingness until the set of rules found is reduced to a manageable size. In this paper we describe a different approach which is based on the idea to first define a set of “interesting” itemsets (e.g., by a mixture of mining and expert knowledge) and then, in a second step to selectively generate rules for only these itemsets. The main advantage of this approach over increasing thresholds or filtering rules is that the number of rules found is significantly reduced while at the same time it is not necessary to increase the support and confidence thresholds which might lead to missing important information in the database.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N38153109728046c4b9f17f712435b9e6
25 Ndd53bb7f54d445e19a3a2a1adec4c5f4
26 sg:journal.1038958
27 schema:name Selective association rule generation
28 schema:pagination 303-315
29 schema:productId N1bd9cc1248f24a6c954083cb03fbcf75
30 Nec50764b069d407d87716b346849db22
31 Nfca003411c284125a353871c1fddf3a7
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048996281
33 https://doi.org/10.1007/s00180-007-0062-z
34 schema:sdDatePublished 2019-04-11T14:34
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N4d8aad494ebe4ff594ce22d510fdd0fe
37 schema:url http://link.springer.com/10.1007%2Fs00180-007-0062-z
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N1bd9cc1248f24a6c954083cb03fbcf75 schema:name readcube_id
42 schema:value e9691a39b75d41bbcb96fe9d4977a43a9fc6a2e7a9c3106850a6359ac513b8cb
43 rdf:type schema:PropertyValue
44 N38153109728046c4b9f17f712435b9e6 schema:issueNumber 2
45 rdf:type schema:PublicationIssue
46 N4d8aad494ebe4ff594ce22d510fdd0fe schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N50a0e87ab78a47e096d74eb0c4a81dd4 rdf:first sg:person.010226707557.33
49 rdf:rest N8e7804c50bcb442ba526e821ce51e5d6
50 N65b29560c9c3474ebdc40b880d5e5051 rdf:first sg:person.01343724027.36
51 rdf:rest N50a0e87ab78a47e096d74eb0c4a81dd4
52 N8e7804c50bcb442ba526e821ce51e5d6 rdf:first sg:person.01355621653.94
53 rdf:rest rdf:nil
54 Ndd53bb7f54d445e19a3a2a1adec4c5f4 schema:volumeNumber 23
55 rdf:type schema:PublicationVolume
56 Nec50764b069d407d87716b346849db22 schema:name doi
57 schema:value 10.1007/s00180-007-0062-z
58 rdf:type schema:PropertyValue
59 Nfca003411c284125a353871c1fddf3a7 schema:name dimensions_id
60 schema:value pub.1048996281
61 rdf:type schema:PropertyValue
62 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
63 schema:name Information and Computing Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
66 schema:name Information Systems
67 rdf:type schema:DefinedTerm
68 sg:journal.1038958 schema:issn 0943-4062
69 1613-9658
70 schema:name Computational Statistics
71 rdf:type schema:Periodical
72 sg:person.010226707557.33 schema:affiliation https://www.grid.ac/institutes/grid.15788.33
73 schema:familyName Buchta
74 schema:givenName Christian
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010226707557.33
76 rdf:type schema:Person
77 sg:person.01343724027.36 schema:affiliation https://www.grid.ac/institutes/grid.15788.33
78 schema:familyName Hahsler
79 schema:givenName Michael
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343724027.36
81 rdf:type schema:Person
82 sg:person.01355621653.94 schema:affiliation https://www.grid.ac/institutes/grid.15788.33
83 schema:familyName Hornik
84 schema:givenName Kurt
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355621653.94
86 rdf:type schema:Person
87 sg:pub.10.1007/3-540-49257-7_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048579740
88 https://doi.org/10.1007/3-540-49257-7_25
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/978-3-642-57489-4_59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036069151
91 https://doi.org/10.1007/978-3-642-57489-4_59
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bfb0057713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050461938
94 https://doi.org/10.1007/bfb0057713
95 rdf:type schema:CreativeWork
96 sg:pub.10.1023/a:1009895914772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049595553
97 https://doi.org/10.1023/a:1009895914772
98 rdf:type schema:CreativeWork
99 sg:pub.10.1023/b:dami.0000040429.96086.c7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001948553
100 https://doi.org/10.1023/b:dami.0000040429.96086.c7
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1002/1098-111x(200008)15:8<687::aid-int1>3.0.co;2-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050491285
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/s0306-4379(03)00072-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020349998
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1093/bioinformatics/19.1.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033089428
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1145/1007730.1007744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033272278
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1145/170035.170072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028726331
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1145/191246.191314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052019070
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1145/380995.380999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018232547
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1145/380995.381033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030106472
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1145/846183.846188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009189318
119 rdf:type schema:CreativeWork
120 https://www.grid.ac/institutes/grid.15788.33 schema:alternateName Vienna University of Economics and Business
121 schema:name Department of Information Systems and Operations, Institut für Informationswirtschaft, Wirtschaftsuniversität Wien, Augasse 2-6, 1090, Wien, Austria
122 Department of Statistics and Mathematics, Wirtschaftsuniversität Wien, Wien, Austria
123 Institute for Tourism and Leisure Studies, Wirtschaftsuniversität Wien, Wien, Austria
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...