A thermo-mechanical model for simulating the temperature and stress distribution during laser cladding process View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Zhe Zhang, Radovan Kovacevic

ABSTRACT

During the laser cladding process, thermal stresses are induced because of the high-energy input, high temperature gradient, fast cooling rate, and inconsistency of the clad-substrate material. The induced thermal stresses not only increase the crack tendency, but also influence the mechanical performance of the deposited layer. In this study, a three dimensional (3D) uncoupled thermo-mechanical finite element (FE) model was established to simulate the stress evolution of laser cladding of cobalt-based coatings on mild steel A36. The temperature field was simulated first and then used as transient thermal loading to simulate the stress evolution. Stress distributions for three cases: single track on a flat substrate, double-track on a flat substrate, and double-track on a cylindrical substrate, were investigated in detail. To check the accuracy of the simulation results, validation experiments were carried out using an 8-kW high-power direct diode laser. The thermocouples were used to monitor the temperature cycles at several marked points. The cross-sections of single and double tracks on a flat substrate obtained experimentally were compared with the simulation results. The residual stress on the clad was experimentally determined by an X-ray diffraction machine. The experimentally obtained data showed a significant consistency with the prediction results. More... »

PAGES

1-16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00170-018-3127-y

DOI

http://dx.doi.org/10.1007/s00170-018-3127-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111154498


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Southern Methodist University", 
          "id": "https://www.grid.ac/institutes/grid.263864.d", 
          "name": [
            "Center for laser-aided Manufacturing, Lyle School of Engineering, Southern Methodist University, 3101 Dyer street, 75206, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zhe", 
        "id": "sg:person.07464751342.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07464751342.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southern Methodist University", 
          "id": "https://www.grid.ac/institutes/grid.263864.d", 
          "name": [
            "Center for laser-aided Manufacturing, Lyle School of Engineering, Southern Methodist University, 3101 Dyer street, 75206, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kovacevic", 
        "givenName": "Radovan", 
        "id": "sg:person.07647173057.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07647173057.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmapro.2016.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001432048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2014.01.077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004606315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2010.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005673421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2015.04.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006533273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.07.114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007273692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.07.114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007273692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.07.114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007273692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruc.2003.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012840860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2011.03.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013314608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2009.11.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015195943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-016-1942-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017140935", 
          "https://doi.org/10.1007/s11837-016-1942-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2010.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017889568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-013-5150-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021348888", 
          "https://doi.org/10.1007/s11431-013-5150-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.addma.2014.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021705807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2014.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028805614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.addma.2016.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028888978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2010.11.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030732210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ceramint.2014.06.097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036164316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-016-2198-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036208610", 
          "https://doi.org/10.1007/s11837-016-2198-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-016-2198-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036208610", 
          "https://doi.org/10.1007/s11837-016-2198-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.promfg.2016.08.089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047297379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2015.04.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048434115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2008.09.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051017242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2016.02.266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051091698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2016.02.266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051091698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/09544062jmes1782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064450444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1243/09544062jmes1782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064450444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3923/jas.2008.1014.1020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071705469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2017.03.137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084059438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2017.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085207527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.06.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086120619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.06.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086120619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.06.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086120619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2017.06.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086137965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optlastec.2017.07.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091227327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/imece2015-52386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093017048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-018-1840-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101622733", 
          "https://doi.org/10.1007/s00170-018-1840-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-018-1840-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101622733", 
          "https://doi.org/10.1007/s00170-018-1840-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-018-1840-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101622733", 
          "https://doi.org/10.1007/s00170-018-1840-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optlastec.2018.04.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103906976"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05", 
    "datePublishedReg": "2019-05-01", 
    "description": "During the laser cladding process, thermal stresses are induced because of the high-energy input, high temperature gradient, fast cooling rate, and inconsistency of the clad-substrate material. The induced thermal stresses not only increase the crack tendency, but also influence the mechanical performance of the deposited layer. In this study, a three dimensional (3D) uncoupled thermo-mechanical finite element (FE) model was established to simulate the stress evolution of laser cladding of cobalt-based coatings on mild steel A36. The temperature field was simulated first and then used as transient thermal loading to simulate the stress evolution. Stress distributions for three cases: single track on a flat substrate, double-track on a flat substrate, and double-track on a cylindrical substrate, were investigated in detail. To check the accuracy of the simulation results, validation experiments were carried out using an 8-kW high-power direct diode laser. The thermocouples were used to monitor the temperature cycles at several marked points. The cross-sections of single and double tracks on a flat substrate obtained experimentally were compared with the simulation results. The residual stress on the clad was experimentally determined by an X-ray diffraction machine. The experimentally obtained data showed a significant consistency with the prediction results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00170-018-3127-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4318905", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043671", 
        "issn": [
          "0268-3768", 
          "1433-3015"
        ], 
        "name": "The International Journal of Advanced Manufacturing Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "102"
      }
    ], 
    "name": "A thermo-mechanical model for simulating the temperature and stress distribution during laser cladding process", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "72299286b60b39752c77b5b2d470254a192bc4ffe9e70011383f5e6128644693"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00170-018-3127-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111154498"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00170-018-3127-y", 
      "https://app.dimensions.ai/details/publication/pub.1111154498"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130817_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00170-018-3127-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-3127-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-3127-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-3127-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-3127-y'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00170-018-3127-y schema:about anzsrc-for:04
2 anzsrc-for:0403
3 schema:author Nc7119ce7b87748c6a4871b87d5f2fcc5
4 schema:citation sg:pub.10.1007/s00170-018-1840-1
5 sg:pub.10.1007/s11431-013-5150-4
6 sg:pub.10.1007/s11837-016-1942-x
7 sg:pub.10.1007/s11837-016-2198-1
8 https://doi.org/10.1016/j.actamat.2017.06.039
9 https://doi.org/10.1016/j.addma.2014.10.003
10 https://doi.org/10.1016/j.addma.2016.04.004
11 https://doi.org/10.1016/j.apsusc.2008.09.039
12 https://doi.org/10.1016/j.apsusc.2010.09.003
13 https://doi.org/10.1016/j.apsusc.2017.03.137
14 https://doi.org/10.1016/j.ceramint.2014.06.097
15 https://doi.org/10.1016/j.compstruc.2003.11.005
16 https://doi.org/10.1016/j.jallcom.2016.02.266
17 https://doi.org/10.1016/j.jmapro.2016.08.004
18 https://doi.org/10.1016/j.jmatprotec.2010.09.007
19 https://doi.org/10.1016/j.jmatprotec.2011.03.023
20 https://doi.org/10.1016/j.jmatprotec.2015.04.031
21 https://doi.org/10.1016/j.jmatprotec.2017.04.020
22 https://doi.org/10.1016/j.jmatprotec.2017.06.025
23 https://doi.org/10.1016/j.matdes.2010.11.060
24 https://doi.org/10.1016/j.matdes.2014.01.077
25 https://doi.org/10.1016/j.matdes.2016.07.114
26 https://doi.org/10.1016/j.optlastec.2017.07.035
27 https://doi.org/10.1016/j.optlastec.2018.04.034
28 https://doi.org/10.1016/j.promfg.2016.08.089
29 https://doi.org/10.1016/j.surfcoat.2009.11.037
30 https://doi.org/10.1016/j.surfcoat.2014.04.008
31 https://doi.org/10.1016/j.surfcoat.2015.04.035
32 https://doi.org/10.1115/imece2015-52386
33 https://doi.org/10.1243/09544062jmes1782
34 https://doi.org/10.3923/jas.2008.1014.1020
35 schema:datePublished 2019-05
36 schema:datePublishedReg 2019-05-01
37 schema:description During the laser cladding process, thermal stresses are induced because of the high-energy input, high temperature gradient, fast cooling rate, and inconsistency of the clad-substrate material. The induced thermal stresses not only increase the crack tendency, but also influence the mechanical performance of the deposited layer. In this study, a three dimensional (3D) uncoupled thermo-mechanical finite element (FE) model was established to simulate the stress evolution of laser cladding of cobalt-based coatings on mild steel A36. The temperature field was simulated first and then used as transient thermal loading to simulate the stress evolution. Stress distributions for three cases: single track on a flat substrate, double-track on a flat substrate, and double-track on a cylindrical substrate, were investigated in detail. To check the accuracy of the simulation results, validation experiments were carried out using an 8-kW high-power direct diode laser. The thermocouples were used to monitor the temperature cycles at several marked points. The cross-sections of single and double tracks on a flat substrate obtained experimentally were compared with the simulation results. The residual stress on the clad was experimentally determined by an X-ray diffraction machine. The experimentally obtained data showed a significant consistency with the prediction results.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N4b01819e3859468db95d44ba3f79c89c
42 Nfdbec7a8df9e447f92b9dbecb4b14eb4
43 sg:journal.1043671
44 schema:name A thermo-mechanical model for simulating the temperature and stress distribution during laser cladding process
45 schema:pagination 1-16
46 schema:productId N2e7c5a49d2454ee883630dfe2064d151
47 N578ee53d4cf64f36b99bbc6ae062f4b7
48 Nc36883a9c2cc478d9b2505f6978864dc
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111154498
50 https://doi.org/10.1007/s00170-018-3127-y
51 schema:sdDatePublished 2019-04-11T13:57
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N5d625ad6ebac430db16a9ba216c33d11
54 schema:url https://link.springer.com/10.1007%2Fs00170-018-3127-y
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N2e7c5a49d2454ee883630dfe2064d151 schema:name doi
59 schema:value 10.1007/s00170-018-3127-y
60 rdf:type schema:PropertyValue
61 N4b01819e3859468db95d44ba3f79c89c schema:volumeNumber 102
62 rdf:type schema:PublicationVolume
63 N578ee53d4cf64f36b99bbc6ae062f4b7 schema:name dimensions_id
64 schema:value pub.1111154498
65 rdf:type schema:PropertyValue
66 N5d625ad6ebac430db16a9ba216c33d11 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N9b396ea6a7ca4872b9ae7a55bb570a53 rdf:first sg:person.07647173057.91
69 rdf:rest rdf:nil
70 Nc36883a9c2cc478d9b2505f6978864dc schema:name readcube_id
71 schema:value 72299286b60b39752c77b5b2d470254a192bc4ffe9e70011383f5e6128644693
72 rdf:type schema:PropertyValue
73 Nc7119ce7b87748c6a4871b87d5f2fcc5 rdf:first sg:person.07464751342.92
74 rdf:rest N9b396ea6a7ca4872b9ae7a55bb570a53
75 Nfdbec7a8df9e447f92b9dbecb4b14eb4 schema:issueNumber 1-4
76 rdf:type schema:PublicationIssue
77 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
78 schema:name Earth Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
81 schema:name Geology
82 rdf:type schema:DefinedTerm
83 sg:grant.4318905 http://pending.schema.org/fundedItem sg:pub.10.1007/s00170-018-3127-y
84 rdf:type schema:MonetaryGrant
85 sg:journal.1043671 schema:issn 0268-3768
86 1433-3015
87 schema:name The International Journal of Advanced Manufacturing Technology
88 rdf:type schema:Periodical
89 sg:person.07464751342.92 schema:affiliation https://www.grid.ac/institutes/grid.263864.d
90 schema:familyName Zhang
91 schema:givenName Zhe
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07464751342.92
93 rdf:type schema:Person
94 sg:person.07647173057.91 schema:affiliation https://www.grid.ac/institutes/grid.263864.d
95 schema:familyName Kovacevic
96 schema:givenName Radovan
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07647173057.91
98 rdf:type schema:Person
99 sg:pub.10.1007/s00170-018-1840-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101622733
100 https://doi.org/10.1007/s00170-018-1840-1
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s11431-013-5150-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021348888
103 https://doi.org/10.1007/s11431-013-5150-4
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s11837-016-1942-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017140935
106 https://doi.org/10.1007/s11837-016-1942-x
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s11837-016-2198-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036208610
109 https://doi.org/10.1007/s11837-016-2198-1
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.actamat.2017.06.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086120619
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.addma.2014.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021705807
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.addma.2016.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028888978
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.apsusc.2008.09.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051017242
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.apsusc.2010.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005673421
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.apsusc.2017.03.137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084059438
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.ceramint.2014.06.097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036164316
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.compstruc.2003.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012840860
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.jallcom.2016.02.266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051091698
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.jmapro.2016.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001432048
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.jmatprotec.2010.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017889568
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.jmatprotec.2011.03.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013314608
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.jmatprotec.2015.04.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048434115
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.jmatprotec.2017.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085207527
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.jmatprotec.2017.06.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086137965
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.matdes.2010.11.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030732210
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.matdes.2014.01.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004606315
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.matdes.2016.07.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007273692
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.optlastec.2017.07.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091227327
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.optlastec.2018.04.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103906976
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.promfg.2016.08.089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047297379
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.surfcoat.2009.11.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015195943
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.surfcoat.2014.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028805614
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.surfcoat.2015.04.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006533273
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1115/imece2015-52386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093017048
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1243/09544062jmes1782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064450444
162 rdf:type schema:CreativeWork
163 https://doi.org/10.3923/jas.2008.1014.1020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071705469
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.263864.d schema:alternateName Southern Methodist University
166 schema:name Center for laser-aided Manufacturing, Lyle School of Engineering, Southern Methodist University, 3101 Dyer street, 75206, Dallas, TX, USA
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...