Digital image approach to tool path generation for surface machining View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Ke Xu, Yingguang Li

ABSTRACT

Conventional tool path generation algorithms are usually dependent to the surface geometry and thus case-sensitive. A specific tool path planning method for regular parametric surfaces cannot directly handle a triangular mesh surface, and vice versa. Presented in this paper is a unified digital image representation of a surface, along with a general process of tool path generation and optimization directly based on such representation. Regarding different objectives and utilities, three typical digital images are introduced to represent a projectable surface. Each digital image induces a uniform discrete scalar/vector field indicating the surface geometric property, which can be further applied to the cutter contact curve generation, tool orientation determination, and the cutting simulation tasks. Preliminary examples give a sneak peek of the capability of the proposed method. It is observed that, instead of utilizing geometry-based algorithm, some global optimization task of the tool path is transformed into finding a proper convolutional kernel and its parameter for the image processing. Though more investigation is worth spending in the future, the proposed approach inaugurates a standard and effective way to facilitate the tool path generation and optimization task for surface machining. More... »

PAGES

1-12

References to SciGraph publications

  • 2009-02. Combined reparameterization-based spiral toolpath generation for five-axis sculptured surface machining in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2014-12. Five-axis tool path and feed rate optimization based on the cutting force–area quotient potential field in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2013-08. A cutter orientation modification method for five-axis ball-end machining with kinematic constraints in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2007-02. Automatic selection of cutter orientation for preventing the collision problem on a five-axis machining in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2006-04. Iso-parametric tool path generation from triangular meshes for free-form surface machining in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2001-04. A Path Interval Generation Algorithm in Sculptured Object Machining in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2008-04. Mesh-based tool path generation for constant scallop-height machining in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 1997-06. Collision-free tool path generation using 2-dimensional C-space for 5-axis control machining in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2002-03. A Surface Based Approach for Constant Scallop HeightTool-Path Generation in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 1999-01. Five-Axis NC Machining of Sculptured Surfaces in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2013-07. Experimental study of the effect of tool orientation in five-axis micro-milling of brass using ball-end mills in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00170-018-3118-z

    DOI

    http://dx.doi.org/10.1007/s00170-018-3118-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110402201


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Nanjing University of Aeronautics and Astronautics", 
              "id": "https://www.grid.ac/institutes/grid.64938.30", 
              "name": [
                "Nanjing University of Aeronautics and Astronautics, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Ke", 
            "id": "sg:person.015022746473.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015022746473.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing University of Aeronautics and Astronautics", 
              "id": "https://www.grid.ac/institutes/grid.64938.30", 
              "name": [
                "Nanjing University of Aeronautics and Astronautics, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Yingguang", 
            "id": "sg:person.011555605443.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011555605443.06"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s001700170138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001104085", 
              "https://doi.org/10.1007/s001700170138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclepro.2016.08.140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003644026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0010-4485(02)00057-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004391749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001700050033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006020372", 
              "https://doi.org/10.1007/s001700050033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-005-0312-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006780470", 
              "https://doi.org/10.1007/s00170-005-0312-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-005-0312-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006780470", 
              "https://doi.org/10.1007/s00170-005-0312-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001700200019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008203018", 
              "https://doi.org/10.1007/s001700200019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cad.2015.03.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009541588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cad.2007.04.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009956294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0924-0136(02)00408-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010208069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01179033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011733249", 
              "https://doi.org/10.1007/bf01179033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01179033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011733249", 
              "https://doi.org/10.1007/bf01179033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-008-1385-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013397517", 
              "https://doi.org/10.1007/s00170-008-1385-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-008-1385-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013397517", 
              "https://doi.org/10.1007/s00170-008-1385-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2003.10.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013595450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0010-4485(02)00048-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014181355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0010-4485(01)00116-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014446569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0010-4485(97)00002-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015770301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0010-4485(02)00045-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018079127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/002075400188799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018617648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-014-6221-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018820468", 
              "https://doi.org/10.1007/s00170-014-6221-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1186822.1073228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019383115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/0951192x.2015.1068451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020338773"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0010-4485(01)00102-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020992766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0924-0136(02)00745-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024030489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0924-0136(02)00745-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024030489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-007-0943-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024865296", 
              "https://doi.org/10.1007/s00170-007-0943-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-007-0943-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024865296", 
              "https://doi.org/10.1007/s00170-007-0943-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-8659.2005.00855.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025027467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0010-4485(99)00052-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027182103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0890-6955(00)00025-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027669744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-012-4699-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028648320", 
              "https://doi.org/10.1007/s00170-012-4699-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cad.2016.10.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029534397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cad.2014.04.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035122524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-012-4549-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036603116", 
              "https://doi.org/10.1007/s00170-012-4549-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-004-2437-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040605118", 
              "https://doi.org/10.1007/s00170-004-2437-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-004-2437-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040605118", 
              "https://doi.org/10.1007/s00170-004-2437-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0890-6955(03)00107-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042408533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0890-6955(03)00107-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042408533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0010-4485(02)00047-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046381331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2011.08.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046651228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cad.2011.09.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052822016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.2803642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062083244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.2833094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062087324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.2901938", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062092662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0216045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062841991"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "Conventional tool path generation algorithms are usually dependent to the surface geometry and thus case-sensitive. A specific tool path planning method for regular parametric surfaces cannot directly handle a triangular mesh surface, and vice versa. Presented in this paper is a unified digital image representation of a surface, along with a general process of tool path generation and optimization directly based on such representation. Regarding different objectives and utilities, three typical digital images are introduced to represent a projectable surface. Each digital image induces a uniform discrete scalar/vector field indicating the surface geometric property, which can be further applied to the cutter contact curve generation, tool orientation determination, and the cutting simulation tasks. Preliminary examples give a sneak peek of the capability of the proposed method. It is observed that, instead of utilizing geometry-based algorithm, some global optimization task of the tool path is transformed into finding a proper convolutional kernel and its parameter for the image processing. Though more investigation is worth spending in the future, the proposed approach inaugurates a standard and effective way to facilitate the tool path generation and optimization task for surface machining.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00170-018-3118-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043671", 
            "issn": [
              "0268-3768", 
              "1433-3015"
            ], 
            "name": "The International Journal of Advanced Manufacturing Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9-12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "101"
          }
        ], 
        "name": "Digital image approach to tool path generation for surface machining", 
        "pagination": "1-12", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c31d32033ccfb0d69ac8ccbc5f85b0307727ec7fbdea4c5711503c6ff3ef0f3c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00170-018-3118-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110402201"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00170-018-3118-z", 
          "https://app.dimensions.ai/details/publication/pub.1110402201"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130823_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00170-018-3118-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-3118-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-3118-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-3118-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-3118-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    196 TRIPLES      21 PREDICATES      66 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00170-018-3118-z schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Na9fe3b54d76c4e1e9070194b8564f667
    4 schema:citation sg:pub.10.1007/bf01179033
    5 sg:pub.10.1007/s00170-004-2437-4
    6 sg:pub.10.1007/s00170-005-0312-6
    7 sg:pub.10.1007/s00170-007-0943-x
    8 sg:pub.10.1007/s00170-008-1385-9
    9 sg:pub.10.1007/s00170-012-4549-6
    10 sg:pub.10.1007/s00170-012-4699-6
    11 sg:pub.10.1007/s00170-014-6221-9
    12 sg:pub.10.1007/s001700050033
    13 sg:pub.10.1007/s001700170138
    14 sg:pub.10.1007/s001700200019
    15 https://doi.org/10.1016/j.cad.2007.04.003
    16 https://doi.org/10.1016/j.cad.2011.09.005
    17 https://doi.org/10.1016/j.cad.2014.04.006
    18 https://doi.org/10.1016/j.cad.2015.03.003
    19 https://doi.org/10.1016/j.cad.2016.10.001
    20 https://doi.org/10.1016/j.ijmachtools.2003.10.008
    21 https://doi.org/10.1016/j.ijmachtools.2011.08.014
    22 https://doi.org/10.1016/j.jclepro.2016.08.140
    23 https://doi.org/10.1016/s0010-4485(01)00102-6
    24 https://doi.org/10.1016/s0010-4485(01)00116-6
    25 https://doi.org/10.1016/s0010-4485(02)00045-3
    26 https://doi.org/10.1016/s0010-4485(02)00047-7
    27 https://doi.org/10.1016/s0010-4485(02)00048-9
    28 https://doi.org/10.1016/s0010-4485(02)00057-x
    29 https://doi.org/10.1016/s0010-4485(97)00002-x
    30 https://doi.org/10.1016/s0010-4485(99)00052-4
    31 https://doi.org/10.1016/s0890-6955(00)00025-0
    32 https://doi.org/10.1016/s0890-6955(03)00107-x
    33 https://doi.org/10.1016/s0924-0136(02)00408-9
    34 https://doi.org/10.1016/s0924-0136(02)00745-8
    35 https://doi.org/10.1080/002075400188799
    36 https://doi.org/10.1080/0951192x.2015.1068451
    37 https://doi.org/10.1111/j.1467-8659.2005.00855.x
    38 https://doi.org/10.1115/1.2803642
    39 https://doi.org/10.1115/1.2833094
    40 https://doi.org/10.1115/1.2901938
    41 https://doi.org/10.1137/0216045
    42 https://doi.org/10.1145/1186822.1073228
    43 schema:datePublished 2019-04
    44 schema:datePublishedReg 2019-04-01
    45 schema:description Conventional tool path generation algorithms are usually dependent to the surface geometry and thus case-sensitive. A specific tool path planning method for regular parametric surfaces cannot directly handle a triangular mesh surface, and vice versa. Presented in this paper is a unified digital image representation of a surface, along with a general process of tool path generation and optimization directly based on such representation. Regarding different objectives and utilities, three typical digital images are introduced to represent a projectable surface. Each digital image induces a uniform discrete scalar/vector field indicating the surface geometric property, which can be further applied to the cutter contact curve generation, tool orientation determination, and the cutting simulation tasks. Preliminary examples give a sneak peek of the capability of the proposed method. It is observed that, instead of utilizing geometry-based algorithm, some global optimization task of the tool path is transformed into finding a proper convolutional kernel and its parameter for the image processing. Though more investigation is worth spending in the future, the proposed approach inaugurates a standard and effective way to facilitate the tool path generation and optimization task for surface machining.
    46 schema:genre research_article
    47 schema:inLanguage en
    48 schema:isAccessibleForFree false
    49 schema:isPartOf N80b29cff7eb447feb35ebccb91549074
    50 Ncee52be408da47aeaa285a6c10e31811
    51 sg:journal.1043671
    52 schema:name Digital image approach to tool path generation for surface machining
    53 schema:pagination 1-12
    54 schema:productId N31b21c6d84ff46b8aa1793a49ed0831a
    55 N5e8b08b9b5e54c4e8fb33942168ad2b6
    56 Ne617e303e21a49009fab41c2e5ba98d9
    57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110402201
    58 https://doi.org/10.1007/s00170-018-3118-z
    59 schema:sdDatePublished 2019-04-11T13:59
    60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    61 schema:sdPublisher N2afa958bddef4576b9d4c76af279a370
    62 schema:url https://link.springer.com/10.1007%2Fs00170-018-3118-z
    63 sgo:license sg:explorer/license/
    64 sgo:sdDataset articles
    65 rdf:type schema:ScholarlyArticle
    66 N2afa958bddef4576b9d4c76af279a370 schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 N31b21c6d84ff46b8aa1793a49ed0831a schema:name doi
    69 schema:value 10.1007/s00170-018-3118-z
    70 rdf:type schema:PropertyValue
    71 N5e8b08b9b5e54c4e8fb33942168ad2b6 schema:name dimensions_id
    72 schema:value pub.1110402201
    73 rdf:type schema:PropertyValue
    74 N80b29cff7eb447feb35ebccb91549074 schema:issueNumber 9-12
    75 rdf:type schema:PublicationIssue
    76 Na9fe3b54d76c4e1e9070194b8564f667 rdf:first sg:person.015022746473.95
    77 rdf:rest Nc9e8a6d7c9d94ba9af0c9dd748a8921b
    78 Nc9e8a6d7c9d94ba9af0c9dd748a8921b rdf:first sg:person.011555605443.06
    79 rdf:rest rdf:nil
    80 Ncee52be408da47aeaa285a6c10e31811 schema:volumeNumber 101
    81 rdf:type schema:PublicationVolume
    82 Ne617e303e21a49009fab41c2e5ba98d9 schema:name readcube_id
    83 schema:value c31d32033ccfb0d69ac8ccbc5f85b0307727ec7fbdea4c5711503c6ff3ef0f3c
    84 rdf:type schema:PropertyValue
    85 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Information and Computing Sciences
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Artificial Intelligence and Image Processing
    90 rdf:type schema:DefinedTerm
    91 sg:journal.1043671 schema:issn 0268-3768
    92 1433-3015
    93 schema:name The International Journal of Advanced Manufacturing Technology
    94 rdf:type schema:Periodical
    95 sg:person.011555605443.06 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
    96 schema:familyName Li
    97 schema:givenName Yingguang
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011555605443.06
    99 rdf:type schema:Person
    100 sg:person.015022746473.95 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
    101 schema:familyName Xu
    102 schema:givenName Ke
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015022746473.95
    104 rdf:type schema:Person
    105 sg:pub.10.1007/bf01179033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011733249
    106 https://doi.org/10.1007/bf01179033
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/s00170-004-2437-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040605118
    109 https://doi.org/10.1007/s00170-004-2437-4
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/s00170-005-0312-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006780470
    112 https://doi.org/10.1007/s00170-005-0312-6
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/s00170-007-0943-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024865296
    115 https://doi.org/10.1007/s00170-007-0943-x
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s00170-008-1385-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013397517
    118 https://doi.org/10.1007/s00170-008-1385-9
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s00170-012-4549-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036603116
    121 https://doi.org/10.1007/s00170-012-4549-6
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/s00170-012-4699-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028648320
    124 https://doi.org/10.1007/s00170-012-4699-6
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/s00170-014-6221-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018820468
    127 https://doi.org/10.1007/s00170-014-6221-9
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/s001700050033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006020372
    130 https://doi.org/10.1007/s001700050033
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/s001700170138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001104085
    133 https://doi.org/10.1007/s001700170138
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/s001700200019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008203018
    136 https://doi.org/10.1007/s001700200019
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.cad.2007.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009956294
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.cad.2011.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052822016
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.cad.2014.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035122524
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.cad.2015.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009541588
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.cad.2016.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029534397
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.ijmachtools.2003.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013595450
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.ijmachtools.2011.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046651228
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.jclepro.2016.08.140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003644026
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/s0010-4485(01)00102-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020992766
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/s0010-4485(01)00116-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014446569
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/s0010-4485(02)00045-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018079127
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/s0010-4485(02)00047-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046381331
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/s0010-4485(02)00048-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014181355
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/s0010-4485(02)00057-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004391749
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/s0010-4485(97)00002-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015770301
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/s0010-4485(99)00052-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027182103
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/s0890-6955(00)00025-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027669744
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/s0890-6955(03)00107-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042408533
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/s0924-0136(02)00408-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010208069
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/s0924-0136(02)00745-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024030489
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1080/002075400188799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018617648
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1080/0951192x.2015.1068451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020338773
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1111/j.1467-8659.2005.00855.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025027467
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1115/1.2803642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062083244
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1115/1.2833094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062087324
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1115/1.2901938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062092662
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1137/0216045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841991
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1145/1186822.1073228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019383115
    193 rdf:type schema:CreativeWork
    194 https://www.grid.ac/institutes/grid.64938.30 schema:alternateName Nanjing University of Aeronautics and Astronautics
    195 schema:name Nanjing University of Aeronautics and Astronautics, Nanjing, China
    196 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...