Investigation and modelling of the cutting forces in turning process of the Ti-6Al-4V and Ti-6Al-7Nb titanium alloys View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Sérgio Luiz Moni Ribeiro Filho, Robson Bruno Dutra Pereira, Carlos Henrique Lauro, Lincoln Cardoso Brandão

ABSTRACT

The algebraic and statistical models have assumed an essential role to better understand the relationship of the cutting parameters and their interactions in the cutting forces. This work evaluated the effects of cutting speed, feed rate, and depth of cut on the cutting force (Fc) and specific cutting force (kS) in the turning of the Ti-6Al-4V and Ti-6Al-7Nb titanium alloys. The experimental tests were carried out with two different insert tools under dry conditions. A response surface method was employed for modelling and better understanding the correlation between the cutting forces and the independent parameters. A central composite design was used as experimental planning. The adequacy and significance of the response model were identified using the analysis of variance (ANOVA). The developed RSM models showed a good degree of fit, which indicates that the cutting force models can be effectively used to estimate the responses in the turning of the Ti-6Al-4V and Ti-6Al-7Nb titanium alloys. The lowest force components were found when the depth of cut and feed rate levels are small and cutting speed is high. Furthermore, the depth of cut was the most significant factor influencing the cutting efforts. Finally, kS values were mainly influenced by chip thickness, while the cutting speed has not affected the kS data. More... »

PAGES

1-13

References to SciGraph publications

  • 2017-10. Study of surface roughness and cutting forces using ANN, RSM, and ANOVA in turning of Ti-6Al-4V under cryogenic jets applied at flank and rake faces of coated WC tool in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2017-10. Analysis of the micro turning process in the Ti-6Al-4V titanium alloy in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2017-05. High-pressure coolant on flank and rake surfaces of tool in turning of Ti-6Al-4V: investigations on forces, temperature, and chips in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2018-06. Analytic model of process forces for orthogonal turn-milling in PRODUCTION ENGINEERING
  • 2017-11. Surface integrity and tool life when turning of Ti-6Al-4V with coolant applied by different methods in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 1998-10. Mechanical properties and corrosion resistance of Ti–6Al–7Nb alloy dental castings in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN MEDICINE
  • 2018-09. Behaviour of a biocompatible titanium alloy during orthogonal micro-cutting employing green machining techniques in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00170-018-3110-7

    DOI

    http://dx.doi.org/10.1007/s00170-018-3110-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110260216


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Federal University of S\u00e3o Jo\u00e3o del-Rei", 
              "id": "https://www.grid.ac/institutes/grid.428481.3", 
              "name": [
                "Department of Mechanical Engineering, Centre for Innovation in Sustainable Manufacturing, Federal University of S\u00e3o Jo\u00e3o del-Rei, Pra\u00e7a Frei Orlando, 170, centro, 36.307-352, S\u00e3o Jo\u00e3o del Rei, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Filho", 
            "givenName": "S\u00e9rgio Luiz Moni Ribeiro", 
            "id": "sg:person.012743616457.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012743616457.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Federal University of S\u00e3o Jo\u00e3o del-Rei", 
              "id": "https://www.grid.ac/institutes/grid.428481.3", 
              "name": [
                "Department of Mechanical Engineering, Centre for Innovation in Sustainable Manufacturing, Federal University of S\u00e3o Jo\u00e3o del-Rei, Pra\u00e7a Frei Orlando, 170, centro, 36.307-352, S\u00e3o Jo\u00e3o del Rei, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pereira", 
            "givenName": "Robson Bruno Dutra", 
            "id": "sg:person.014005263200.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014005263200.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Federal University of S\u00e3o Jo\u00e3o del-Rei", 
              "id": "https://www.grid.ac/institutes/grid.428481.3", 
              "name": [
                "Department of Mechanical Engineering, Centre for Innovation in Sustainable Manufacturing, Federal University of S\u00e3o Jo\u00e3o del-Rei, Pra\u00e7a Frei Orlando, 170, centro, 36.307-352, S\u00e3o Jo\u00e3o del Rei, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lauro", 
            "givenName": "Carlos Henrique", 
            "id": "sg:person.012573106207.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012573106207.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Federal University of S\u00e3o Jo\u00e3o del-Rei", 
              "id": "https://www.grid.ac/institutes/grid.428481.3", 
              "name": [
                "Department of Mechanical Engineering, Centre for Innovation in Sustainable Manufacturing, Federal University of S\u00e3o Jo\u00e3o del-Rei, Pra\u00e7a Frei Orlando, 170, centro, 36.307-352, S\u00e3o Jo\u00e3o del Rei, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brand\u00e3o", 
            "givenName": "Lincoln Cardoso", 
            "id": "sg:person.010700145015.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010700145015.59"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1080/15321790500226614", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007976541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.measurement.2016.07.059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011453647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procir.2015.03.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012453022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.measurement.2013.09.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013783760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2016.04.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016334641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cirp.2010.03.056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018281520"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procir.2015.03.084", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025846564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.measurement.2016.03.047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027775300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jestch.2016.10.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035602949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-016-9511-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040774252", 
              "https://doi.org/10.1007/s00170-016-9511-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-016-9511-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040774252", 
              "https://doi.org/10.1007/s00170-016-9511-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0890-6955(00)00026-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041611922"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008909408948", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042513733", 
              "https://doi.org/10.1023/a:1008909408948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.msec.2015.05.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049717491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.12700/aph.12.7.2015.7.7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064630874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.promfg.2017.02.099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084104026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-0449-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085212714", 
              "https://doi.org/10.1007/s00170-017-0449-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-0449-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085212714", 
              "https://doi.org/10.1007/s00170-017-0449-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-0566-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085745325", 
              "https://doi.org/10.1007/s00170-017-0566-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-0566-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085745325", 
              "https://doi.org/10.1007/s00170-017-0566-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-0658-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086120517", 
              "https://doi.org/10.1007/s00170-017-0658-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-0658-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086120517", 
              "https://doi.org/10.1007/s00170-017-0658-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5545/sv-jme.2017.4430", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090865527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.measurement.2017.09.032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091891677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmapro.2018.01.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100822241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.promfg.2018.02.085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101148231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procir.2017.12.212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101675306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11740-018-0828-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103417323", 
              "https://doi.org/10.1007/s11740-018-0828-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11740-018-0828-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103417323", 
              "https://doi.org/10.1007/s11740-018-0828-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmecsci.2018.05.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103792206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-018-2352-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105048848", 
              "https://doi.org/10.1007/s00170-018-2352-8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "The algebraic and statistical models have assumed an essential role to better understand the relationship of the cutting parameters and their interactions in the cutting forces. This work evaluated the effects of cutting speed, feed rate, and depth of cut on the cutting force (Fc) and specific cutting force (kS) in the turning of the Ti-6Al-4V and Ti-6Al-7Nb titanium alloys. The experimental tests were carried out with two different insert tools under dry conditions. A response surface method was employed for modelling and better understanding the correlation between the cutting forces and the independent parameters. A central composite design was used as experimental planning. The adequacy and significance of the response model were identified using the analysis of variance (ANOVA). The developed RSM models showed a good degree of fit, which indicates that the cutting force models can be effectively used to estimate the responses in the turning of the Ti-6Al-4V and Ti-6Al-7Nb titanium alloys. The lowest force components were found when the depth of cut and feed rate levels are small and cutting speed is high. Furthermore, the depth of cut was the most significant factor influencing the cutting efforts. Finally, kS values were mainly influenced by chip thickness, while the cutting speed has not affected the kS data.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00170-018-3110-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043671", 
            "issn": [
              "0268-3768", 
              "1433-3015"
            ], 
            "name": "The International Journal of Advanced Manufacturing Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9-12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "101"
          }
        ], 
        "name": "Investigation and modelling of the cutting forces in turning process of the Ti-6Al-4V and Ti-6Al-7Nb titanium alloys", 
        "pagination": "1-13", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "92e32bf54f558bd518664ee43c08a3cc28a9b547e4a279c2fa9123b924fd2329"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00170-018-3110-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110260216"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00170-018-3110-7", 
          "https://app.dimensions.ai/details/publication/pub.1110260216"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130801_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00170-018-3110-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-3110-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-3110-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-3110-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-3110-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    167 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00170-018-3110-7 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N1d7f704d9e6f4307b98ed39060638058
    4 schema:citation sg:pub.10.1007/s00170-016-9511-6
    5 sg:pub.10.1007/s00170-017-0449-0
    6 sg:pub.10.1007/s00170-017-0566-9
    7 sg:pub.10.1007/s00170-017-0658-6
    8 sg:pub.10.1007/s00170-018-2352-8
    9 sg:pub.10.1007/s11740-018-0828-x
    10 sg:pub.10.1023/a:1008909408948
    11 https://doi.org/10.1016/j.cirp.2010.03.056
    12 https://doi.org/10.1016/j.ijmachtools.2016.04.006
    13 https://doi.org/10.1016/j.ijmecsci.2018.05.004
    14 https://doi.org/10.1016/j.jestch.2016.10.019
    15 https://doi.org/10.1016/j.jmapro.2018.01.012
    16 https://doi.org/10.1016/j.measurement.2013.09.023
    17 https://doi.org/10.1016/j.measurement.2016.03.047
    18 https://doi.org/10.1016/j.measurement.2016.07.059
    19 https://doi.org/10.1016/j.measurement.2017.09.032
    20 https://doi.org/10.1016/j.msec.2015.05.018
    21 https://doi.org/10.1016/j.procir.2015.03.017
    22 https://doi.org/10.1016/j.procir.2015.03.084
    23 https://doi.org/10.1016/j.procir.2017.12.212
    24 https://doi.org/10.1016/j.promfg.2017.02.099
    25 https://doi.org/10.1016/j.promfg.2018.02.085
    26 https://doi.org/10.1016/s0890-6955(00)00026-2
    27 https://doi.org/10.1080/15321790500226614
    28 https://doi.org/10.12700/aph.12.7.2015.7.7
    29 https://doi.org/10.5545/sv-jme.2017.4430
    30 schema:datePublished 2019-04
    31 schema:datePublishedReg 2019-04-01
    32 schema:description The algebraic and statistical models have assumed an essential role to better understand the relationship of the cutting parameters and their interactions in the cutting forces. This work evaluated the effects of cutting speed, feed rate, and depth of cut on the cutting force (Fc) and specific cutting force (kS) in the turning of the Ti-6Al-4V and Ti-6Al-7Nb titanium alloys. The experimental tests were carried out with two different insert tools under dry conditions. A response surface method was employed for modelling and better understanding the correlation between the cutting forces and the independent parameters. A central composite design was used as experimental planning. The adequacy and significance of the response model were identified using the analysis of variance (ANOVA). The developed RSM models showed a good degree of fit, which indicates that the cutting force models can be effectively used to estimate the responses in the turning of the Ti-6Al-4V and Ti-6Al-7Nb titanium alloys. The lowest force components were found when the depth of cut and feed rate levels are small and cutting speed is high. Furthermore, the depth of cut was the most significant factor influencing the cutting efforts. Finally, kS values were mainly influenced by chip thickness, while the cutting speed has not affected the kS data.
    33 schema:genre research_article
    34 schema:inLanguage en
    35 schema:isAccessibleForFree false
    36 schema:isPartOf N0d8ee3db31634fffaeb28ed229759602
    37 Nf7eb6dbc7bfa4a90ae6d041884cac818
    38 sg:journal.1043671
    39 schema:name Investigation and modelling of the cutting forces in turning process of the Ti-6Al-4V and Ti-6Al-7Nb titanium alloys
    40 schema:pagination 1-13
    41 schema:productId N0fe030eb762c4c1295f03a19922bfaf4
    42 N2518478742eb4a789528c022579fe16e
    43 Ne2c038e827de482f8856586bc01303ae
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110260216
    45 https://doi.org/10.1007/s00170-018-3110-7
    46 schema:sdDatePublished 2019-04-11T13:52
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher N1c261d4700404862abdba30c8589bd07
    49 schema:url https://link.springer.com/10.1007%2Fs00170-018-3110-7
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N0d8ee3db31634fffaeb28ed229759602 schema:issueNumber 9-12
    54 rdf:type schema:PublicationIssue
    55 N0fe030eb762c4c1295f03a19922bfaf4 schema:name readcube_id
    56 schema:value 92e32bf54f558bd518664ee43c08a3cc28a9b547e4a279c2fa9123b924fd2329
    57 rdf:type schema:PropertyValue
    58 N1c261d4700404862abdba30c8589bd07 schema:name Springer Nature - SN SciGraph project
    59 rdf:type schema:Organization
    60 N1d7f704d9e6f4307b98ed39060638058 rdf:first sg:person.012743616457.43
    61 rdf:rest N34c80fa7dff74d79852c3316c082eb05
    62 N2518478742eb4a789528c022579fe16e schema:name doi
    63 schema:value 10.1007/s00170-018-3110-7
    64 rdf:type schema:PropertyValue
    65 N26527412af7b4fe5aff52608669ace95 rdf:first sg:person.010700145015.59
    66 rdf:rest rdf:nil
    67 N34c80fa7dff74d79852c3316c082eb05 rdf:first sg:person.014005263200.37
    68 rdf:rest N7003cc48cf13471d88bf32d5f5fb43a8
    69 N7003cc48cf13471d88bf32d5f5fb43a8 rdf:first sg:person.012573106207.20
    70 rdf:rest N26527412af7b4fe5aff52608669ace95
    71 Ne2c038e827de482f8856586bc01303ae schema:name dimensions_id
    72 schema:value pub.1110260216
    73 rdf:type schema:PropertyValue
    74 Nf7eb6dbc7bfa4a90ae6d041884cac818 schema:volumeNumber 101
    75 rdf:type schema:PublicationVolume
    76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Mathematical Sciences
    78 rdf:type schema:DefinedTerm
    79 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Statistics
    81 rdf:type schema:DefinedTerm
    82 sg:journal.1043671 schema:issn 0268-3768
    83 1433-3015
    84 schema:name The International Journal of Advanced Manufacturing Technology
    85 rdf:type schema:Periodical
    86 sg:person.010700145015.59 schema:affiliation https://www.grid.ac/institutes/grid.428481.3
    87 schema:familyName Brandão
    88 schema:givenName Lincoln Cardoso
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010700145015.59
    90 rdf:type schema:Person
    91 sg:person.012573106207.20 schema:affiliation https://www.grid.ac/institutes/grid.428481.3
    92 schema:familyName Lauro
    93 schema:givenName Carlos Henrique
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012573106207.20
    95 rdf:type schema:Person
    96 sg:person.012743616457.43 schema:affiliation https://www.grid.ac/institutes/grid.428481.3
    97 schema:familyName Filho
    98 schema:givenName Sérgio Luiz Moni Ribeiro
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012743616457.43
    100 rdf:type schema:Person
    101 sg:person.014005263200.37 schema:affiliation https://www.grid.ac/institutes/grid.428481.3
    102 schema:familyName Pereira
    103 schema:givenName Robson Bruno Dutra
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014005263200.37
    105 rdf:type schema:Person
    106 sg:pub.10.1007/s00170-016-9511-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040774252
    107 https://doi.org/10.1007/s00170-016-9511-6
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s00170-017-0449-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085212714
    110 https://doi.org/10.1007/s00170-017-0449-0
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/s00170-017-0566-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085745325
    113 https://doi.org/10.1007/s00170-017-0566-9
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/s00170-017-0658-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086120517
    116 https://doi.org/10.1007/s00170-017-0658-6
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/s00170-018-2352-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105048848
    119 https://doi.org/10.1007/s00170-018-2352-8
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/s11740-018-0828-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1103417323
    122 https://doi.org/10.1007/s11740-018-0828-x
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1023/a:1008909408948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042513733
    125 https://doi.org/10.1023/a:1008909408948
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/j.cirp.2010.03.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018281520
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.ijmachtools.2016.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016334641
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/j.ijmecsci.2018.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103792206
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.jestch.2016.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035602949
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.jmapro.2018.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100822241
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.measurement.2013.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013783760
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.measurement.2016.03.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027775300
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.measurement.2016.07.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011453647
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.measurement.2017.09.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091891677
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.msec.2015.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049717491
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.procir.2015.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012453022
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.procir.2015.03.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025846564
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/j.procir.2017.12.212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101675306
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.promfg.2017.02.099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084104026
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/j.promfg.2018.02.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101148231
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/s0890-6955(00)00026-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041611922
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1080/15321790500226614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007976541
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.12700/aph.12.7.2015.7.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064630874
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.5545/sv-jme.2017.4430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090865527
    164 rdf:type schema:CreativeWork
    165 https://www.grid.ac/institutes/grid.428481.3 schema:alternateName Federal University of São João del-Rei
    166 schema:name Department of Mechanical Engineering, Centre for Innovation in Sustainable Manufacturing, Federal University of São João del-Rei, Praça Frei Orlando, 170, centro, 36.307-352, São João del Rei, Brazil
    167 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...