Micro-holes EDM of superalloy Inconel 718 based on a magnetic suspension spindle system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Yerui Feng, Yongfeng Guo, Zebin Ling, Xiaoyou Zhang

ABSTRACT

Micro-electro discharge machining (EDM) plays an important role in fabrication of micro-parts and structures such as micro-holes. However, due to the micro-discharge gap between workpiece and electrode, debris in the gap cannot be flushed away effectively during machining process. Debris accumulation could cause a poor machining stability and low production efficiency for micro-EDM. To address these issues, in this study, a magnetic suspension spindle system (MSSS) EDM possessed high response frequency was proposed to machine micro-holes in superalloy Inconel 718. The objective of this experimental work is to study effects of machining parameters on discharge percentage, material removal rate (MRR), electrode wear rate (EWR), and recast layer with high response frequency MSSS EDM. Experimental results reveal that compared to micro-holes machined by conventional EDM, discharge percentage increased by at least 30%, and arc percentage decreased by at least 11%. Hence, MRR increased by at least 23% and EWR decreased by at least 43%. The inlet and outlet diameters of the micro-holes were improved further and the recast layer significantly decreased by MSSS EDM. The experimental results demonstrate that compared to conventional EDM, MSSS EDM can be used to fabricate micro-holes on Inconel 718 with a higher efficiency and quality. More... »

PAGES

2015-2026

References to SciGraph publications

  • 2018-02. A comparative study on the modelling of EDM and hybrid electrical discharge and arc machining considering latent heat and temperature-dependent properties of Inconel 718 in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2008-04. A Study on Process Parameters of Ultrasonic Assisted Micro EDM Based on Taguchi Method in JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
  • 2016-03. A novel PWM power amplifier of magnetic suspension spindle control system for micro EDM in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2017-09. Optimization of process parameters in micro-EDM of Ti-6Al-4V based on full factorial design in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2018-02. A magnetic suspension spindle system for small and micro holes EDM in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2015-12. Effect of low frequency vibration on micro EDM drilling in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • 2016-07. A novel micro-EDM—piezoelectric self-adaptive micro-EDM in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2018-02. Parametric study of ultrasonic-assisted hole sinking micro-EDM of titanium alloy in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2016-04. Optimization of parameters for EDM drilling of thermal-barrier-coated nickel superalloys using gray relational analysis method in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2013-05. Optimization of micro-EDM drilling of inconel 718 superalloy in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2017-05. Investigation on Conductive Layer, Delamination, and Recast Layer Characteristics of Electro-discharge Machined Holes in TBCs in JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00170-018-3075-6

    DOI

    http://dx.doi.org/10.1007/s00170-018-3075-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110226447


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Manufacturing Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harbin Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.19373.3f", 
              "name": [
                "School of Mechatronics Engineering, Harbin Institute of Technology, No.92 West Dazhi Street, Nangang District, 150001, Harbin, Heilongjiang, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Feng", 
            "givenName": "Yerui", 
            "id": "sg:person.013347546364.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013347546364.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harbin Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.19373.3f", 
              "name": [
                "School of Mechatronics Engineering, Harbin Institute of Technology, No.92 West Dazhi Street, Nangang District, 150001, Harbin, Heilongjiang, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guo", 
            "givenName": "Yongfeng", 
            "id": "sg:person.011527023225.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011527023225.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harbin Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.19373.3f", 
              "name": [
                "School of Mechatronics Engineering, Harbin Institute of Technology, No.92 West Dazhi Street, Nangang District, 150001, Harbin, Heilongjiang, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ling", 
            "givenName": "Zebin", 
            "id": "sg:person.012657710043.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012657710043.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nippon Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.444271.0", 
              "name": [
                "Japan Mechanical Engineering Faculty, Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro-machi, 345-8501, Minamisaitama-gun, Saitama Pref., Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Xiaoyou", 
            "id": "sg:person.015335630677.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015335630677.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1080/10426914.2013.864406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000252997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-012-4385-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000759574", 
              "https://doi.org/10.1007/s00170-012-4385-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2004.02.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007576424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0924-0136(03)00224-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007711703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0924-0136(03)00224-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007711703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2012.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009769099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-015-7622-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011878132", 
              "https://doi.org/10.1007/s00170-015-7622-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cirp.2008.03.097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013011080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2006.08.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021215601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-015-7939-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021923036", 
              "https://doi.org/10.1007/s00170-015-7939-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2012.02.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027127223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procir.2016.02.174", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029345361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procir.2013.03.058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037932656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11665-007-9128-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042231551", 
              "https://doi.org/10.1007/s11665-007-9128-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cirp.2015.04.040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043415987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-015-7685-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046644292", 
              "https://doi.org/10.1007/s00170-015-7685-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.precisioneng.2006.01.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051074410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-015-0335-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052798215", 
              "https://doi.org/10.1007/s12541-015-0335-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.1615793", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062072989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-0103-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083901160", 
              "https://doi.org/10.1007/s00170-017-0103-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-0103-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083901160", 
              "https://doi.org/10.1007/s00170-017-0103-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11665-017-2654-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084750907", 
              "https://doi.org/10.1007/s11665-017-2654-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11665-017-2654-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084750907", 
              "https://doi.org/10.1007/s11665-017-2654-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-0990-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091410243", 
              "https://doi.org/10.1007/s00170-017-0990-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-1051-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091764554", 
              "https://doi.org/10.1007/s00170-017-1051-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-1100-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091834263", 
              "https://doi.org/10.1007/s00170-017-1100-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219686718500063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101568379"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "Micro-electro discharge machining (EDM) plays an important role in fabrication of micro-parts and structures such as micro-holes. However, due to the micro-discharge gap between workpiece and electrode, debris in the gap cannot be flushed away effectively during machining process. Debris accumulation could cause a poor machining stability and low production efficiency for micro-EDM. To address these issues, in this study, a magnetic suspension spindle system (MSSS) EDM possessed high response frequency was proposed to machine micro-holes in superalloy Inconel 718. The objective of this experimental work is to study effects of machining parameters on discharge percentage, material removal rate (MRR), electrode wear rate (EWR), and recast layer with high response frequency MSSS EDM. Experimental results reveal that compared to micro-holes machined by conventional EDM, discharge percentage increased by at least 30%, and arc percentage decreased by at least 11%. Hence, MRR increased by at least 23% and EWR decreased by at least 43%. The inlet and outlet diameters of the micro-holes were improved further and the recast layer significantly decreased by MSSS EDM. The experimental results demonstrate that compared to conventional EDM, MSSS EDM can be used to fabricate micro-holes on Inconel 718 with a higher efficiency and quality.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00170-018-3075-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043671", 
            "issn": [
              "0268-3768", 
              "1433-3015"
            ], 
            "name": "The International Journal of Advanced Manufacturing Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5-8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "101"
          }
        ], 
        "name": "Micro-holes EDM of superalloy Inconel 718 based on a magnetic suspension spindle system", 
        "pagination": "2015-2026", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00170-018-3075-6"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5f16c603c88f91cf2f1daba36f209ab68c2494e5396c08bb0841cf2a05e0e0c7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110226447"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00170-018-3075-6", 
          "https://app.dimensions.ai/details/publication/pub.1110226447"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T09:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56159_00000005.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00170-018-3075-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-3075-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-3075-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-3075-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-3075-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    168 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00170-018-3075-6 schema:about anzsrc-for:09
    2 anzsrc-for:0910
    3 schema:author N77c6ce1deff14ee2a72e4fddd8b87a86
    4 schema:citation sg:pub.10.1007/s00170-012-4385-8
    5 sg:pub.10.1007/s00170-015-7622-0
    6 sg:pub.10.1007/s00170-015-7685-y
    7 sg:pub.10.1007/s00170-015-7939-8
    8 sg:pub.10.1007/s00170-017-0103-x
    9 sg:pub.10.1007/s00170-017-0990-x
    10 sg:pub.10.1007/s00170-017-1051-1
    11 sg:pub.10.1007/s00170-017-1100-9
    12 sg:pub.10.1007/s11665-007-9128-x
    13 sg:pub.10.1007/s11665-017-2654-2
    14 sg:pub.10.1007/s12541-015-0335-3
    15 https://doi.org/10.1016/j.cirp.2008.03.097
    16 https://doi.org/10.1016/j.cirp.2015.04.040
    17 https://doi.org/10.1016/j.ijmachtools.2006.08.026
    18 https://doi.org/10.1016/j.ijmachtools.2012.02.004
    19 https://doi.org/10.1016/j.ijmachtools.2012.08.001
    20 https://doi.org/10.1016/j.jmatprotec.2004.02.013
    21 https://doi.org/10.1016/j.precisioneng.2006.01.004
    22 https://doi.org/10.1016/j.procir.2013.03.058
    23 https://doi.org/10.1016/j.procir.2016.02.174
    24 https://doi.org/10.1016/s0924-0136(03)00224-3
    25 https://doi.org/10.1080/10426914.2013.864406
    26 https://doi.org/10.1115/1.1615793
    27 https://doi.org/10.1142/s0219686718500063
    28 schema:datePublished 2019-04
    29 schema:datePublishedReg 2019-04-01
    30 schema:description Micro-electro discharge machining (EDM) plays an important role in fabrication of micro-parts and structures such as micro-holes. However, due to the micro-discharge gap between workpiece and electrode, debris in the gap cannot be flushed away effectively during machining process. Debris accumulation could cause a poor machining stability and low production efficiency for micro-EDM. To address these issues, in this study, a magnetic suspension spindle system (MSSS) EDM possessed high response frequency was proposed to machine micro-holes in superalloy Inconel 718. The objective of this experimental work is to study effects of machining parameters on discharge percentage, material removal rate (MRR), electrode wear rate (EWR), and recast layer with high response frequency MSSS EDM. Experimental results reveal that compared to micro-holes machined by conventional EDM, discharge percentage increased by at least 30%, and arc percentage decreased by at least 11%. Hence, MRR increased by at least 23% and EWR decreased by at least 43%. The inlet and outlet diameters of the micro-holes were improved further and the recast layer significantly decreased by MSSS EDM. The experimental results demonstrate that compared to conventional EDM, MSSS EDM can be used to fabricate micro-holes on Inconel 718 with a higher efficiency and quality.
    31 schema:genre research_article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree false
    34 schema:isPartOf Ne272e6d8f68e4cc09d335699ca812d80
    35 Nf6bff0f4f7fd4656a81175247ea8505d
    36 sg:journal.1043671
    37 schema:name Micro-holes EDM of superalloy Inconel 718 based on a magnetic suspension spindle system
    38 schema:pagination 2015-2026
    39 schema:productId N09d6d5f3d15144909d597089550e7dab
    40 N7c8125f874454222820e279fb20e720a
    41 Ne549c19ab9bd45e68f10dce5bcc44864
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110226447
    43 https://doi.org/10.1007/s00170-018-3075-6
    44 schema:sdDatePublished 2019-04-15T09:13
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher Nc5e44eddff6d4282b6bba700e3eb2014
    47 schema:url https://link.springer.com/10.1007%2Fs00170-018-3075-6
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N09d6d5f3d15144909d597089550e7dab schema:name doi
    52 schema:value 10.1007/s00170-018-3075-6
    53 rdf:type schema:PropertyValue
    54 N27a2f9ed547943ccb48e16a3937e37a7 rdf:first sg:person.012657710043.13
    55 rdf:rest Nedfd050bce994dfb8001ac328cb21296
    56 N77c6ce1deff14ee2a72e4fddd8b87a86 rdf:first sg:person.013347546364.14
    57 rdf:rest Nf6a2846ac2174dc9b784e2603a9f1de3
    58 N7c8125f874454222820e279fb20e720a schema:name dimensions_id
    59 schema:value pub.1110226447
    60 rdf:type schema:PropertyValue
    61 Nc5e44eddff6d4282b6bba700e3eb2014 schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 Ne272e6d8f68e4cc09d335699ca812d80 schema:issueNumber 5-8
    64 rdf:type schema:PublicationIssue
    65 Ne549c19ab9bd45e68f10dce5bcc44864 schema:name readcube_id
    66 schema:value 5f16c603c88f91cf2f1daba36f209ab68c2494e5396c08bb0841cf2a05e0e0c7
    67 rdf:type schema:PropertyValue
    68 Nedfd050bce994dfb8001ac328cb21296 rdf:first sg:person.015335630677.39
    69 rdf:rest rdf:nil
    70 Nf6a2846ac2174dc9b784e2603a9f1de3 rdf:first sg:person.011527023225.15
    71 rdf:rest N27a2f9ed547943ccb48e16a3937e37a7
    72 Nf6bff0f4f7fd4656a81175247ea8505d schema:volumeNumber 101
    73 rdf:type schema:PublicationVolume
    74 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Engineering
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Manufacturing Engineering
    79 rdf:type schema:DefinedTerm
    80 sg:journal.1043671 schema:issn 0268-3768
    81 1433-3015
    82 schema:name The International Journal of Advanced Manufacturing Technology
    83 rdf:type schema:Periodical
    84 sg:person.011527023225.15 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
    85 schema:familyName Guo
    86 schema:givenName Yongfeng
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011527023225.15
    88 rdf:type schema:Person
    89 sg:person.012657710043.13 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
    90 schema:familyName Ling
    91 schema:givenName Zebin
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012657710043.13
    93 rdf:type schema:Person
    94 sg:person.013347546364.14 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
    95 schema:familyName Feng
    96 schema:givenName Yerui
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013347546364.14
    98 rdf:type schema:Person
    99 sg:person.015335630677.39 schema:affiliation https://www.grid.ac/institutes/grid.444271.0
    100 schema:familyName Zhang
    101 schema:givenName Xiaoyou
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015335630677.39
    103 rdf:type schema:Person
    104 sg:pub.10.1007/s00170-012-4385-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000759574
    105 https://doi.org/10.1007/s00170-012-4385-8
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/s00170-015-7622-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011878132
    108 https://doi.org/10.1007/s00170-015-7622-0
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/s00170-015-7685-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1046644292
    111 https://doi.org/10.1007/s00170-015-7685-y
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/s00170-015-7939-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021923036
    114 https://doi.org/10.1007/s00170-015-7939-8
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s00170-017-0103-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1083901160
    117 https://doi.org/10.1007/s00170-017-0103-x
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s00170-017-0990-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1091410243
    120 https://doi.org/10.1007/s00170-017-0990-x
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/s00170-017-1051-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091764554
    123 https://doi.org/10.1007/s00170-017-1051-1
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s00170-017-1100-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091834263
    126 https://doi.org/10.1007/s00170-017-1100-9
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s11665-007-9128-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042231551
    129 https://doi.org/10.1007/s11665-007-9128-x
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s11665-017-2654-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084750907
    132 https://doi.org/10.1007/s11665-017-2654-2
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s12541-015-0335-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052798215
    135 https://doi.org/10.1007/s12541-015-0335-3
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.cirp.2008.03.097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013011080
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.cirp.2015.04.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043415987
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.ijmachtools.2006.08.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021215601
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.ijmachtools.2012.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027127223
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.ijmachtools.2012.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009769099
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.jmatprotec.2004.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007576424
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.precisioneng.2006.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051074410
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/j.procir.2013.03.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037932656
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.procir.2016.02.174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029345361
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/s0924-0136(03)00224-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007711703
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1080/10426914.2013.864406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000252997
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1115/1.1615793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062072989
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1142/s0219686718500063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101568379
    162 rdf:type schema:CreativeWork
    163 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
    164 schema:name School of Mechatronics Engineering, Harbin Institute of Technology, No.92 West Dazhi Street, Nangang District, 150001, Harbin, Heilongjiang, China
    165 rdf:type schema:Organization
    166 https://www.grid.ac/institutes/grid.444271.0 schema:alternateName Nippon Institute of Technology
    167 schema:name Japan Mechanical Engineering Faculty, Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro-machi, 345-8501, Minamisaitama-gun, Saitama Pref., Japan
    168 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...