Interlayer fracture energy of 3D-printed PLA material View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Hadi Noori

ABSTRACT

The application of 3D printing in additive manufacturing processes is expanding due to its versatility and the progress in the process control. In conjunction with its fast-growing applications, the performance and properties of the material after 3D printing need thorough assessments for critical designs in medical, aerospace, and automotive industries. Although increasing the deposition height in 3D printing decreases the time of manufacturing, the properties of the products must satisfy design specifications for the product strength and surface condition. The objective of the current study is to explore the effect of deposition height on tensile fracture energy of the layered structure of a biodegradable and bioactive thermoplastic polymer, known as polylactide (PLA). The results obtained from uniaxial tensile loading experiments show that the energy required for interlayer fracture is dependent on the deposition height. Based on the experimental results, it is evident that two factors conversely affect the fracture energy: tensile residual stress and the interlayer contact area. Also, the results show that the surface roughness has no significant influence on fracture energy. More... »

PAGES

1959-1965

References to SciGraph publications

  • 2013-07. Additive manufacturing and its societal impact: a literature review in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2016-03. Additive manufacturing methods and modelling approaches: a critical review in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00170-018-3031-5

    DOI

    http://dx.doi.org/10.1007/s00170-018-3031-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110226440


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Oklahoma State University", 
              "id": "https://www.grid.ac/institutes/grid.65519.3e", 
              "name": [
                "Lightweighting Research Center, School of Mechanical and Aerospace Engineering, Oklahoma State University, 201 General Academic Building, 74078, Stillwater, OK, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Noori", 
            "givenName": "Hadi", 
            "id": "sg:person.011335465355.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011335465355.65"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.compositesb.2016.11.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006536023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-015-7576-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016101018", 
              "https://doi.org/10.1007/s00170-015-7576-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-015-7576-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016101018", 
              "https://doi.org/10.1007/s00170-015-7576-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.polymdegradstab.2009.11.045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027829621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.addr.2016.06.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033666698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1108/13552541211272045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036531393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cirp.2016.05.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048661887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-012-4558-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052351021", 
              "https://doi.org/10.1007/s00170-012-4558-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0954410014568797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063888011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0954410014568797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063888011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0954410014568797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063888011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00207543.2017.1282645", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083438060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2017.03.051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084094827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2017.03.065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084094841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1108/rpj-03-2016-0050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085285042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/app7060579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085859746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bushor.2017.05.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090287620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1108/rpj-05-2016-0077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090639211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.addma.2017.11.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092537162"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "The application of 3D printing in additive manufacturing processes is expanding due to its versatility and the progress in the process control. In conjunction with its fast-growing applications, the performance and properties of the material after 3D printing need thorough assessments for critical designs in medical, aerospace, and automotive industries. Although increasing the deposition height in 3D printing decreases the time of manufacturing, the properties of the products must satisfy design specifications for the product strength and surface condition. The objective of the current study is to explore the effect of deposition height on tensile fracture energy of the layered structure of a biodegradable and bioactive thermoplastic polymer, known as polylactide (PLA). The results obtained from uniaxial tensile loading experiments show that the energy required for interlayer fracture is dependent on the deposition height. Based on the experimental results, it is evident that two factors conversely affect the fracture energy: tensile residual stress and the interlayer contact area. Also, the results show that the surface roughness has no significant influence on fracture energy.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00170-018-3031-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043671", 
            "issn": [
              "0268-3768", 
              "1433-3015"
            ], 
            "name": "The International Journal of Advanced Manufacturing Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5-8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "101"
          }
        ], 
        "name": "Interlayer fracture energy of 3D-printed PLA material", 
        "pagination": "1959-1965", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00170-018-3031-5"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2d507334cd1a7bd9c723831843ec548d5f37b3719ac71c9a3895e617c8855152"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110226440"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00170-018-3031-5", 
          "https://app.dimensions.ai/details/publication/pub.1110226440"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T09:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56196_00000005.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00170-018-3031-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-3031-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-3031-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-3031-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-3031-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    111 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00170-018-3031-5 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N6934698ea8424dcca33cbdd5699954f4
    4 schema:citation sg:pub.10.1007/s00170-012-4558-5
    5 sg:pub.10.1007/s00170-015-7576-2
    6 https://doi.org/10.1016/j.addma.2017.11.002
    7 https://doi.org/10.1016/j.addr.2016.06.012
    8 https://doi.org/10.1016/j.bushor.2017.05.011
    9 https://doi.org/10.1016/j.cirp.2016.05.004
    10 https://doi.org/10.1016/j.compositesb.2016.11.034
    11 https://doi.org/10.1016/j.matdes.2017.03.051
    12 https://doi.org/10.1016/j.matdes.2017.03.065
    13 https://doi.org/10.1016/j.polymdegradstab.2009.11.045
    14 https://doi.org/10.1080/00207543.2017.1282645
    15 https://doi.org/10.1108/13552541211272045
    16 https://doi.org/10.1108/rpj-03-2016-0050
    17 https://doi.org/10.1108/rpj-05-2016-0077
    18 https://doi.org/10.1177/0954410014568797
    19 https://doi.org/10.3390/app7060579
    20 schema:datePublished 2019-04
    21 schema:datePublishedReg 2019-04-01
    22 schema:description The application of 3D printing in additive manufacturing processes is expanding due to its versatility and the progress in the process control. In conjunction with its fast-growing applications, the performance and properties of the material after 3D printing need thorough assessments for critical designs in medical, aerospace, and automotive industries. Although increasing the deposition height in 3D printing decreases the time of manufacturing, the properties of the products must satisfy design specifications for the product strength and surface condition. The objective of the current study is to explore the effect of deposition height on tensile fracture energy of the layered structure of a biodegradable and bioactive thermoplastic polymer, known as polylactide (PLA). The results obtained from uniaxial tensile loading experiments show that the energy required for interlayer fracture is dependent on the deposition height. Based on the experimental results, it is evident that two factors conversely affect the fracture energy: tensile residual stress and the interlayer contact area. Also, the results show that the surface roughness has no significant influence on fracture energy.
    23 schema:genre research_article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree false
    26 schema:isPartOf N248925ecffae418f99484aea0b2320fd
    27 N401d732ed70f4050882f35b80f1e113e
    28 sg:journal.1043671
    29 schema:name Interlayer fracture energy of 3D-printed PLA material
    30 schema:pagination 1959-1965
    31 schema:productId N2a5f548b5275405680ce3b8f8aec50cd
    32 N3def66d2c9f54f1a81c250b3dd0922dd
    33 Nee5aa26328894eaa8fa3ecc8824951ef
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110226440
    35 https://doi.org/10.1007/s00170-018-3031-5
    36 schema:sdDatePublished 2019-04-15T09:28
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher N6f2fc0f6526e4f01b873f65b4abe1db0
    39 schema:url https://link.springer.com/10.1007%2Fs00170-018-3031-5
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset articles
    42 rdf:type schema:ScholarlyArticle
    43 N248925ecffae418f99484aea0b2320fd schema:issueNumber 5-8
    44 rdf:type schema:PublicationIssue
    45 N2a5f548b5275405680ce3b8f8aec50cd schema:name doi
    46 schema:value 10.1007/s00170-018-3031-5
    47 rdf:type schema:PropertyValue
    48 N3def66d2c9f54f1a81c250b3dd0922dd schema:name readcube_id
    49 schema:value 2d507334cd1a7bd9c723831843ec548d5f37b3719ac71c9a3895e617c8855152
    50 rdf:type schema:PropertyValue
    51 N401d732ed70f4050882f35b80f1e113e schema:volumeNumber 101
    52 rdf:type schema:PublicationVolume
    53 N6934698ea8424dcca33cbdd5699954f4 rdf:first sg:person.011335465355.65
    54 rdf:rest rdf:nil
    55 N6f2fc0f6526e4f01b873f65b4abe1db0 schema:name Springer Nature - SN SciGraph project
    56 rdf:type schema:Organization
    57 Nee5aa26328894eaa8fa3ecc8824951ef schema:name dimensions_id
    58 schema:value pub.1110226440
    59 rdf:type schema:PropertyValue
    60 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Engineering
    62 rdf:type schema:DefinedTerm
    63 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Materials Engineering
    65 rdf:type schema:DefinedTerm
    66 sg:journal.1043671 schema:issn 0268-3768
    67 1433-3015
    68 schema:name The International Journal of Advanced Manufacturing Technology
    69 rdf:type schema:Periodical
    70 sg:person.011335465355.65 schema:affiliation https://www.grid.ac/institutes/grid.65519.3e
    71 schema:familyName Noori
    72 schema:givenName Hadi
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011335465355.65
    74 rdf:type schema:Person
    75 sg:pub.10.1007/s00170-012-4558-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052351021
    76 https://doi.org/10.1007/s00170-012-4558-5
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1007/s00170-015-7576-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016101018
    79 https://doi.org/10.1007/s00170-015-7576-2
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1016/j.addma.2017.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092537162
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1016/j.addr.2016.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033666698
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/j.bushor.2017.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090287620
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1016/j.cirp.2016.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048661887
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1016/j.compositesb.2016.11.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006536023
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1016/j.matdes.2017.03.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084094827
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1016/j.matdes.2017.03.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084094841
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1016/j.polymdegradstab.2009.11.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027829621
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1080/00207543.2017.1282645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083438060
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1108/13552541211272045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036531393
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1108/rpj-03-2016-0050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085285042
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1108/rpj-05-2016-0077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090639211
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1177/0954410014568797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063888011
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.3390/app7060579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085859746
    108 rdf:type schema:CreativeWork
    109 https://www.grid.ac/institutes/grid.65519.3e schema:alternateName Oklahoma State University
    110 schema:name Lightweighting Research Center, School of Mechanical and Aerospace Engineering, Oklahoma State University, 201 General Academic Building, 74078, Stillwater, OK, USA
    111 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...