Soft abrasive flow polishing based on the cavitation effect View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Shiming Ji, Huiqiang Cao, Jun Zhao, Ye Pan, Enyong Jiang

ABSTRACT

The fluid medium used for soft abrasive flow (SAF) is of low viscosity and high flow velocity. The conventional SAF processing method is widely used due its ability to avoid damage and its adaptability of the workpiece surface. However, the current SAF method also suffers from limitations such as long polishing times and low processing efficiency. To address these issues, this paper proposes a method based on the cavitation effect to assist the soft abrasive flow polishing, termed CSAF. First, the working mechanism of CSAF is introduced through a schematic diagram. In addition, a CSAF fluid mechanic model is configured on the basis of the mixture multiphase model and cavitation model. Then, the distribution of key flow parameters, such as the velocity, dynamic pressure, and turbulent kinetic energy, is obtained and compared through computational fluid dynamic software. Numerical analysis results show that the flow field assisted by the cavitation effects shows better processing performance than SAF. Finally, particle imaging velocity (PIV) observation and experimental processing platforms are established, and extensive experiments are conducted. The processing comparison experiments showed that the abrasive flow assisted by the cavitation effect can lower the workpiece surface roughness to 3.46 nm with a satisfactory surface quality over a shorter time than the SAF method. The numerical analysis results are aligned with the PIV observation and the polishing experiment results. The SAF polishing method based on the cavitation effect significantly increases the polishing efficiency. More... »

PAGES

1865-1878

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00170-018-2983-9

DOI

http://dx.doi.org/10.1007/s00170-018-2983-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110202936


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Key Laboratory of Special Purpose Equipment and Advanced Processing Technology of the Ministry of Education, Zhejiang University of Technology, 310032, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Shiming", 
        "id": "sg:person.01046153163.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046153163.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Key Laboratory of Special Purpose Equipment and Advanced Processing Technology of the Ministry of Education, Zhejiang University of Technology, 310032, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Huiqiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Key Laboratory of Special Purpose Equipment and Advanced Processing Technology of the Ministry of Education, Zhejiang University of Technology, 310032, Hangzhou, China", 
            "Yiwu Academy of Science and Technology, Zhejiang University of Technology, 322001, Yiwu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Jun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Key Laboratory of Special Purpose Equipment and Advanced Processing Technology of the Ministry of Education, Zhejiang University of Technology, 310032, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "Ye", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Key Laboratory of Special Purpose Equipment and Advanced Processing Technology of the Ministry of Education, Zhejiang University of Technology, 310032, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Enyong", 
        "id": "sg:person.015210475713.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015210475713.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cirp.2013.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002499062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.stam.2006.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008645758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.triboint.2007.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012270426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3154/tvsj.23.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014567397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3154/tvsj.23.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014567397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optcom.2012.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015739134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1648(63)90003-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016823502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1648(63)90003-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016823502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10845-016-1265-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022477621", 
          "https://doi.org/10.1007/s10845-016-1265-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10845-016-1265-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022477621", 
          "https://doi.org/10.1007/s10845-016-1265-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.precisioneng.2015.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024520903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.triboint.2016.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024768310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-016-9405-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032989241", 
          "https://doi.org/10.1007/s00170-016-9405-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-016-9405-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032989241", 
          "https://doi.org/10.1007/s00170-016-9405-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solmat.2007.03.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035847494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2010.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040541875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2008.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043049606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2016.08.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050689781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-011-3621-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052942639", 
          "https://doi.org/10.1007/s00170-011-3621-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-011-3621-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052942639", 
          "https://doi.org/10.1007/s00170-011-3621-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0004-637x/806/1/61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058945517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.264502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.264502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1524584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062071572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2004-10435-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064237217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.37.006771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065113687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3901/jme.2012.15.193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071553406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wear.2017.02.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083868301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-017-0400-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085050040", 
          "https://doi.org/10.1007/s00170-017-0400-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-017-0400-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085050040", 
          "https://doi.org/10.1007/s00170-017-0400-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cirp.2017.04.083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085183219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-017-1250-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092579135", 
          "https://doi.org/10.1007/s00170-017-1250-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultsonch.2017.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092668454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tii.2017.2773644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092718339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2017.11.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092957074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-017-1498-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100405748", 
          "https://doi.org/10.1007/s00170-017-1498-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-018-1993-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103687202", 
          "https://doi.org/10.1007/s00170-018-1993-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-018-1993-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103687202", 
          "https://doi.org/10.1007/s00170-018-1993-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2018.04.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103688830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wear.2018.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104422939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wear.2018.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104422939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-018-2271-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104496021", 
          "https://doi.org/10.1007/s00170-018-2271-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.precisioneng.2018.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106858273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.precisioneng.2018.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106858273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1631/jzus.a1800260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107135863", 
          "https://doi.org/10.1631/jzus.a1800260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1631/jzus.a1800260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107135863", 
          "https://doi.org/10.1631/jzus.a1800260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-018-2685-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107186981", 
          "https://doi.org/10.1007/s00170-018-2685-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-018-2685-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107186981", 
          "https://doi.org/10.1007/s00170-018-2685-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-018-2685-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107186981", 
          "https://doi.org/10.1007/s00170-018-2685-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-018-2686-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107229126", 
          "https://doi.org/10.1007/s00170-018-2686-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-018-2686-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107229126", 
          "https://doi.org/10.1007/s00170-018-2686-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-018-2686-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107229126", 
          "https://doi.org/10.1007/s00170-018-2686-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "The fluid medium used for soft abrasive flow (SAF) is of low viscosity and high flow velocity. The conventional SAF processing method is widely used due its ability to avoid damage and its adaptability of the workpiece surface. However, the current SAF method also suffers from limitations such as long polishing times and low processing efficiency. To address these issues, this paper proposes a method based on the cavitation effect to assist the soft abrasive flow polishing, termed CSAF. First, the working mechanism of CSAF is introduced through a schematic diagram. In addition, a CSAF fluid mechanic model is configured on the basis of the mixture multiphase model and cavitation model. Then, the distribution of key flow parameters, such as the velocity, dynamic pressure, and turbulent kinetic energy, is obtained and compared through computational fluid dynamic software. Numerical analysis results show that the flow field assisted by the cavitation effects shows better processing performance than SAF. Finally, particle imaging velocity (PIV) observation and experimental processing platforms are established, and extensive experiments are conducted. The processing comparison experiments showed that the abrasive flow assisted by the cavitation effect can lower the workpiece surface roughness to 3.46 nm with a satisfactory surface quality over a shorter time than the SAF method. The numerical analysis results are aligned with the PIV observation and the polishing experiment results. The SAF polishing method based on the cavitation effect significantly increases the polishing efficiency.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00170-018-2983-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043671", 
        "issn": [
          "0268-3768", 
          "1433-3015"
        ], 
        "name": "The International Journal of Advanced Manufacturing Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "101"
      }
    ], 
    "name": "Soft abrasive flow polishing based on the cavitation effect", 
    "pagination": "1865-1878", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00170-018-2983-9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "796bfe1d0c52f8f1ebb46890ead3e12afb4fc8fe76684ef076e15f58eed44567"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110202936"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00170-018-2983-9", 
      "https://app.dimensions.ai/details/publication/pub.1110202936"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56167_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00170-018-2983-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-2983-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-2983-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-2983-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-2983-9'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      21 PREDICATES      64 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00170-018-2983-9 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N95f23c8966074135a09b86197dfa1d36
4 schema:citation sg:pub.10.1007/s00170-011-3621-y
5 sg:pub.10.1007/s00170-016-9405-7
6 sg:pub.10.1007/s00170-017-0400-4
7 sg:pub.10.1007/s00170-017-1250-9
8 sg:pub.10.1007/s00170-017-1498-0
9 sg:pub.10.1007/s00170-018-1993-y
10 sg:pub.10.1007/s00170-018-2271-8
11 sg:pub.10.1007/s00170-018-2685-3
12 sg:pub.10.1007/s00170-018-2686-2
13 sg:pub.10.1007/s10845-016-1265-3
14 sg:pub.10.1631/jzus.a1800260
15 https://doi.org/10.1016/0043-1648(63)90003-6
16 https://doi.org/10.1016/j.ces.2017.11.037
17 https://doi.org/10.1016/j.cirp.2013.03.010
18 https://doi.org/10.1016/j.cirp.2017.04.083
19 https://doi.org/10.1016/j.ijmachtools.2010.03.007
20 https://doi.org/10.1016/j.jmatprotec.2008.05.012
21 https://doi.org/10.1016/j.jmatprotec.2018.04.043
22 https://doi.org/10.1016/j.optcom.2012.06.015
23 https://doi.org/10.1016/j.powtec.2016.08.057
24 https://doi.org/10.1016/j.precisioneng.2015.04.004
25 https://doi.org/10.1016/j.precisioneng.2018.09.001
26 https://doi.org/10.1016/j.solmat.2007.03.017
27 https://doi.org/10.1016/j.stam.2006.12.003
28 https://doi.org/10.1016/j.triboint.2007.02.013
29 https://doi.org/10.1016/j.triboint.2016.04.006
30 https://doi.org/10.1016/j.ultsonch.2017.11.016
31 https://doi.org/10.1016/j.wear.2017.02.030
32 https://doi.org/10.1016/j.wear.2018.06.001
33 https://doi.org/10.1088/0004-637x/806/1/61
34 https://doi.org/10.1103/physrevlett.109.264502
35 https://doi.org/10.1109/tii.2017.2773644
36 https://doi.org/10.1115/1.1524584
37 https://doi.org/10.1209/epl/i2004-10435-7
38 https://doi.org/10.1364/ao.37.006771
39 https://doi.org/10.3154/tvsj.23.107
40 https://doi.org/10.3901/jme.2012.15.193
41 schema:datePublished 2019-04
42 schema:datePublishedReg 2019-04-01
43 schema:description The fluid medium used for soft abrasive flow (SAF) is of low viscosity and high flow velocity. The conventional SAF processing method is widely used due its ability to avoid damage and its adaptability of the workpiece surface. However, the current SAF method also suffers from limitations such as long polishing times and low processing efficiency. To address these issues, this paper proposes a method based on the cavitation effect to assist the soft abrasive flow polishing, termed CSAF. First, the working mechanism of CSAF is introduced through a schematic diagram. In addition, a CSAF fluid mechanic model is configured on the basis of the mixture multiphase model and cavitation model. Then, the distribution of key flow parameters, such as the velocity, dynamic pressure, and turbulent kinetic energy, is obtained and compared through computational fluid dynamic software. Numerical analysis results show that the flow field assisted by the cavitation effects shows better processing performance than SAF. Finally, particle imaging velocity (PIV) observation and experimental processing platforms are established, and extensive experiments are conducted. The processing comparison experiments showed that the abrasive flow assisted by the cavitation effect can lower the workpiece surface roughness to 3.46 nm with a satisfactory surface quality over a shorter time than the SAF method. The numerical analysis results are aligned with the PIV observation and the polishing experiment results. The SAF polishing method based on the cavitation effect significantly increases the polishing efficiency.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf Nab9f0e5cb0444ff49d5724eb48b22d54
48 Nfd3b3a183b404da4aeac57eb78479dca
49 sg:journal.1043671
50 schema:name Soft abrasive flow polishing based on the cavitation effect
51 schema:pagination 1865-1878
52 schema:productId N82ee4f03e23143ffbba499069681b521
53 Naa90a34f85d54df0bdf4b3dfca94fdbf
54 Nc8a3063c516542b0a4bd347d199aa4f4
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110202936
56 https://doi.org/10.1007/s00170-018-2983-9
57 schema:sdDatePublished 2019-04-15T09:15
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Ne17d4f16a91b4621b5f25ded67fb18d6
60 schema:url https://link.springer.com/10.1007%2Fs00170-018-2983-9
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N0069f9def9444b179b390b53d04f5e29 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
65 schema:familyName Pan
66 schema:givenName Ye
67 rdf:type schema:Person
68 N213ca97c4db046b69b73432d91d84a0b schema:affiliation https://www.grid.ac/institutes/grid.469325.f
69 schema:familyName Zhao
70 schema:givenName Jun
71 rdf:type schema:Person
72 N3156ab37930f4097a6a7cdafabdddfc2 rdf:first N0069f9def9444b179b390b53d04f5e29
73 rdf:rest N628bdaac29d7448fa5e144a6798ca07d
74 N628bdaac29d7448fa5e144a6798ca07d rdf:first sg:person.015210475713.12
75 rdf:rest rdf:nil
76 N6881312822b24138b0f202d5f2ae845b schema:affiliation https://www.grid.ac/institutes/grid.469325.f
77 schema:familyName Cao
78 schema:givenName Huiqiang
79 rdf:type schema:Person
80 N7e935ff4433642cb8ee5a5a30d6520d8 rdf:first N213ca97c4db046b69b73432d91d84a0b
81 rdf:rest N3156ab37930f4097a6a7cdafabdddfc2
82 N82ee4f03e23143ffbba499069681b521 schema:name readcube_id
83 schema:value 796bfe1d0c52f8f1ebb46890ead3e12afb4fc8fe76684ef076e15f58eed44567
84 rdf:type schema:PropertyValue
85 N95f23c8966074135a09b86197dfa1d36 rdf:first sg:person.01046153163.59
86 rdf:rest Ne3805e913f194363938eda173e573cdb
87 Naa90a34f85d54df0bdf4b3dfca94fdbf schema:name dimensions_id
88 schema:value pub.1110202936
89 rdf:type schema:PropertyValue
90 Nab9f0e5cb0444ff49d5724eb48b22d54 schema:issueNumber 5-8
91 rdf:type schema:PublicationIssue
92 Nc8a3063c516542b0a4bd347d199aa4f4 schema:name doi
93 schema:value 10.1007/s00170-018-2983-9
94 rdf:type schema:PropertyValue
95 Ne17d4f16a91b4621b5f25ded67fb18d6 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Ne3805e913f194363938eda173e573cdb rdf:first N6881312822b24138b0f202d5f2ae845b
98 rdf:rest N7e935ff4433642cb8ee5a5a30d6520d8
99 Nfd3b3a183b404da4aeac57eb78479dca schema:volumeNumber 101
100 rdf:type schema:PublicationVolume
101 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
102 schema:name Engineering
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
105 schema:name Interdisciplinary Engineering
106 rdf:type schema:DefinedTerm
107 sg:journal.1043671 schema:issn 0268-3768
108 1433-3015
109 schema:name The International Journal of Advanced Manufacturing Technology
110 rdf:type schema:Periodical
111 sg:person.01046153163.59 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
112 schema:familyName Ji
113 schema:givenName Shiming
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046153163.59
115 rdf:type schema:Person
116 sg:person.015210475713.12 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
117 schema:familyName Jiang
118 schema:givenName Enyong
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015210475713.12
120 rdf:type schema:Person
121 sg:pub.10.1007/s00170-011-3621-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052942639
122 https://doi.org/10.1007/s00170-011-3621-y
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s00170-016-9405-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032989241
125 https://doi.org/10.1007/s00170-016-9405-7
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s00170-017-0400-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085050040
128 https://doi.org/10.1007/s00170-017-0400-4
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s00170-017-1250-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092579135
131 https://doi.org/10.1007/s00170-017-1250-9
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s00170-017-1498-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100405748
134 https://doi.org/10.1007/s00170-017-1498-0
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s00170-018-1993-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1103687202
137 https://doi.org/10.1007/s00170-018-1993-y
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s00170-018-2271-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104496021
140 https://doi.org/10.1007/s00170-018-2271-8
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s00170-018-2685-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107186981
143 https://doi.org/10.1007/s00170-018-2685-3
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s00170-018-2686-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107229126
146 https://doi.org/10.1007/s00170-018-2686-2
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s10845-016-1265-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022477621
149 https://doi.org/10.1007/s10845-016-1265-3
150 rdf:type schema:CreativeWork
151 sg:pub.10.1631/jzus.a1800260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107135863
152 https://doi.org/10.1631/jzus.a1800260
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/0043-1648(63)90003-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016823502
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.ces.2017.11.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092957074
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.cirp.2013.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002499062
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.cirp.2017.04.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085183219
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.ijmachtools.2010.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040541875
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.jmatprotec.2008.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043049606
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.jmatprotec.2018.04.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103688830
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.optcom.2012.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015739134
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.powtec.2016.08.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050689781
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.precisioneng.2015.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024520903
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.precisioneng.2018.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106858273
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.solmat.2007.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035847494
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.stam.2006.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008645758
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.triboint.2007.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012270426
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.triboint.2016.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024768310
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.ultsonch.2017.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092668454
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.wear.2017.02.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083868301
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.wear.2018.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104422939
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1088/0004-637x/806/1/61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058945517
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevlett.109.264502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760753
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1109/tii.2017.2773644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092718339
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1115/1.1524584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062071572
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1209/epl/i2004-10435-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064237217
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1364/ao.37.006771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065113687
201 rdf:type schema:CreativeWork
202 https://doi.org/10.3154/tvsj.23.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014567397
203 rdf:type schema:CreativeWork
204 https://doi.org/10.3901/jme.2012.15.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071553406
205 rdf:type schema:CreativeWork
206 https://www.grid.ac/institutes/grid.469325.f schema:alternateName Zhejiang University of Technology
207 schema:name Key Laboratory of Special Purpose Equipment and Advanced Processing Technology of the Ministry of Education, Zhejiang University of Technology, 310032, Hangzhou, China
208 Yiwu Academy of Science and Technology, Zhejiang University of Technology, 322001, Yiwu, China
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...