Evolutionary computing methodology for small wind turbine supporting structures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Jakub Bukala, Krzysztof Damaziak, Hamid Reza Karimi, Jerzy Malachowski, Kjell Gunnar Robbersmyr

ABSTRACT

The paper presents a comprehensive, complex, numerical, optimization methodology (computational framework) dedicated for supporting structures of small-scale wind turbines. The small wind turbine (SWT) supporting structure is one of the key components determining the cost of such a device. Therefore, the supporting structure optimization will allow cost reduction and, hence, popularization of these devices around the world. The presented methodology is based on the following: single-objective (aggregation-approach to multi-objective problem) evolutionary algorithm driven optimization, finite-element structural analyses, estimation of wind energy capture efficiency (coupled aero-servo-elastic numerical simulations), and economic evaluation (based on real meteorological data). Then, the methodology is proposed for a guy-wired mast structure of an arbitrary chosen SWT model. The optimization of chosen design features of the structure is performed and as a result the optimal solution for given assumptions is presented and scaling factor for that case is identified (total mass of the foundations). The successful use of combined numerical methods (genetic algorithms, FE method analyses, coupled aero-servo-elastic numerical simulations, pre-/post-processing scripts, and economic evaluation models) is the main novelty of this work. More... »

PAGES

1-12

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00170-018-2860-6

DOI

http://dx.doi.org/10.1007/s00170-018-2860-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107740496


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Military University of Technology in Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.69474.38", 
          "name": [
            "Department of Mechanics and Applied Computer Science, Faculty of Mechanical Engineering, Military University of Technology, Gen. Witolda Urbanowicza 2, 00-908, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bukala", 
        "givenName": "Jakub", 
        "id": "sg:person.01332436044.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332436044.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Military University of Technology in Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.69474.38", 
          "name": [
            "Department of Mechanics and Applied Computer Science, Faculty of Mechanical Engineering, Military University of Technology, Gen. Witolda Urbanowicza 2, 00-908, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Damaziak", 
        "givenName": "Krzysztof", 
        "id": "sg:person.015024445160.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015024445160.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Polytechnic University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4643.5", 
          "name": [
            "Department of Mechanical Engineering, Politecnico di Milano, Via Giuseppe La Masa, 1, 20156, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karimi", 
        "givenName": "Hamid Reza", 
        "id": "sg:person.07547104325.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07547104325.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Military University of Technology in Warsaw", 
          "id": "https://www.grid.ac/institutes/grid.69474.38", 
          "name": [
            "Department of Mechanics and Applied Computer Science, Faculty of Mechanical Engineering, Military University of Technology, Gen. Witolda Urbanowicza 2, 00-908, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malachowski", 
        "givenName": "Jerzy", 
        "id": "sg:person.0607031744.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607031744.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Agder", 
          "id": "https://www.grid.ac/institutes/grid.23048.3d", 
          "name": [
            "Department of Engineering Sciences, University of Agder, Jon Lilletunsvei 9, Grimstad, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robbersmyr", 
        "givenName": "Kjell Gunnar", 
        "id": "sg:person.016514130114.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016514130114.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jweia.2016.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000213637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procir.2015.01.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000583556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7949(02)00027-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000623106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2008.04.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003437714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11044-011-9271-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006854038", 
          "https://doi.org/10.1007/s11044-011-9271-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/eng.2010.28082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010685687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2014.12.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011003688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-003-0368-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011264351", 
          "https://doi.org/10.1007/s00158-003-0368-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-003-0368-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011264351", 
          "https://doi.org/10.1007/s00158-003-0368-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2012.10.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013534134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jweia.2015.06.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015677573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2016.12.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016306589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2015.04.140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017238514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7949(99)00079-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018221665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22938-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018319237", 
          "https://doi.org/10.1007/978-3-642-22938-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22938-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018319237", 
          "https://doi.org/10.1007/978-3-642-22938-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2015.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019890809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2014.12.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020752576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5772/63481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022209628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/evco.1994.2.3.221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026010259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/hff-06-2015-0246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026563225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2016.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028621685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2006.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029735202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01743506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030998905", 
          "https://doi.org/10.1007/bf01743506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01743506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030998905", 
          "https://doi.org/10.1007/bf01743506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01759923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035612342", 
          "https://doi.org/10.1007/bf01759923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01759923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035612342", 
          "https://doi.org/10.1007/bf01759923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2015.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041086848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2015.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042054973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2015.08.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042495369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2016.11.087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043025929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40095-014-0128-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045402532", 
          "https://doi.org/10.1007/s40095-014-0128-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40095-014-0128-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045402532", 
          "https://doi.org/10.1007/s40095-014-0128-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2015.05.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047760569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2016.01.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049332209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.2006-786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049369357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2015.10.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050765340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1986.289288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061793830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tste.2010.2046919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061806300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/0309-524x.34.5.561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064577876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/0309-524x.34.5.561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064577876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/030952406779994150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064578505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/030952406779994150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064578505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12989/was.2016.23.6.577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064866787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-017-0098-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083917123", 
          "https://doi.org/10.1007/s00170-017-0098-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-017-0098-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083917123", 
          "https://doi.org/10.1007/s00170-017-0098-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2017.08.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091210104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-017-1125-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091915707", 
          "https://doi.org/10.1007/s00170-017-1125-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "The paper presents a comprehensive, complex, numerical, optimization methodology (computational framework) dedicated for supporting structures of small-scale wind turbines. The small wind turbine (SWT) supporting structure is one of the key components determining the cost of such a device. Therefore, the supporting structure optimization will allow cost reduction and, hence, popularization of these devices around the world. The presented methodology is based on the following: single-objective (aggregation-approach to multi-objective problem) evolutionary algorithm driven optimization, finite-element structural analyses, estimation of wind energy capture efficiency (coupled aero-servo-elastic numerical simulations), and economic evaluation (based on real meteorological data). Then, the methodology is proposed for a guy-wired mast structure of an arbitrary chosen SWT model. The optimization of chosen design features of the structure is performed and as a result the optimal solution for given assumptions is presented and scaling factor for that case is identified (total mass of the foundations). The successful use of combined numerical methods (genetic algorithms, FE method analyses, coupled aero-servo-elastic numerical simulations, pre-/post-processing scripts, and economic evaluation models) is the main novelty of this work.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00170-018-2860-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043671", 
        "issn": [
          "0268-3768", 
          "1433-3015"
        ], 
        "name": "The International Journal of Advanced Manufacturing Technology", 
        "type": "Periodical"
      }
    ], 
    "name": "Evolutionary computing methodology for small wind turbine supporting structures", 
    "pagination": "1-12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "61ca1e62235fab5674f57dd0381cfcb4c7c2b9fa489eb73204d20cccb7c0bc60"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00170-018-2860-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107740496"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00170-018-2860-6", 
      "https://app.dimensions.ai/details/publication/pub.1107740496"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000605.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00170-018-2860-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-2860-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-2860-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-2860-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-2860-6'


 

This table displays all metadata directly associated to this object as RDF triples.

217 TRIPLES      21 PREDICATES      65 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00170-018-2860-6 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nf9590fc8ac684b3980947adc016678b2
4 schema:citation sg:pub.10.1007/978-3-642-22938-1
5 sg:pub.10.1007/bf01743506
6 sg:pub.10.1007/bf01759923
7 sg:pub.10.1007/s00158-003-0368-6
8 sg:pub.10.1007/s00170-017-0098-3
9 sg:pub.10.1007/s00170-017-1125-0
10 sg:pub.10.1007/s11044-011-9271-x
11 sg:pub.10.1007/s40095-014-0128-y
12 https://doi.org/10.1016/j.apenergy.2014.12.043
13 https://doi.org/10.1016/j.apm.2015.07.001
14 https://doi.org/10.1016/j.compstruct.2016.05.013
15 https://doi.org/10.1016/j.compstruct.2016.12.037
16 https://doi.org/10.1016/j.energy.2016.11.087
17 https://doi.org/10.1016/j.engstruct.2006.08.011
18 https://doi.org/10.1016/j.engstruct.2015.12.018
19 https://doi.org/10.1016/j.ijhydene.2008.04.054
20 https://doi.org/10.1016/j.ijhydene.2015.04.140
21 https://doi.org/10.1016/j.jweia.2015.06.017
22 https://doi.org/10.1016/j.jweia.2016.03.006
23 https://doi.org/10.1016/j.matdes.2012.10.036
24 https://doi.org/10.1016/j.procir.2015.01.047
25 https://doi.org/10.1016/j.renene.2014.12.032
26 https://doi.org/10.1016/j.renene.2015.05.047
27 https://doi.org/10.1016/j.renene.2015.08.040
28 https://doi.org/10.1016/j.renene.2015.09.002
29 https://doi.org/10.1016/j.renene.2015.10.040
30 https://doi.org/10.1016/j.renene.2016.01.057
31 https://doi.org/10.1016/j.renene.2017.08.030
32 https://doi.org/10.1016/s0045-7949(02)00027-5
33 https://doi.org/10.1016/s0045-7949(99)00079-6
34 https://doi.org/10.1108/hff-06-2015-0246
35 https://doi.org/10.1109/tsmc.1986.289288
36 https://doi.org/10.1109/tste.2010.2046919
37 https://doi.org/10.1162/evco.1994.2.3.221
38 https://doi.org/10.1260/0309-524x.34.5.561
39 https://doi.org/10.1260/030952406779994150
40 https://doi.org/10.12989/was.2016.23.6.577
41 https://doi.org/10.2514/6.2006-786
42 https://doi.org/10.4236/eng.2010.28082
43 https://doi.org/10.5772/63481
44 schema:datePublished 2019-02
45 schema:datePublishedReg 2019-02-01
46 schema:description The paper presents a comprehensive, complex, numerical, optimization methodology (computational framework) dedicated for supporting structures of small-scale wind turbines. The small wind turbine (SWT) supporting structure is one of the key components determining the cost of such a device. Therefore, the supporting structure optimization will allow cost reduction and, hence, popularization of these devices around the world. The presented methodology is based on the following: single-objective (aggregation-approach to multi-objective problem) evolutionary algorithm driven optimization, finite-element structural analyses, estimation of wind energy capture efficiency (coupled aero-servo-elastic numerical simulations), and economic evaluation (based on real meteorological data). Then, the methodology is proposed for a guy-wired mast structure of an arbitrary chosen SWT model. The optimization of chosen design features of the structure is performed and as a result the optimal solution for given assumptions is presented and scaling factor for that case is identified (total mass of the foundations). The successful use of combined numerical methods (genetic algorithms, FE method analyses, coupled aero-servo-elastic numerical simulations, pre-/post-processing scripts, and economic evaluation models) is the main novelty of this work.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf sg:journal.1043671
51 schema:name Evolutionary computing methodology for small wind turbine supporting structures
52 schema:pagination 1-12
53 schema:productId N46e246ad84b449739421cc513a180f07
54 Nb6a5844c73784cf38876767b51e67e14
55 Ne1f684263d434860b343bd7b72cd59e9
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107740496
57 https://doi.org/10.1007/s00170-018-2860-6
58 schema:sdDatePublished 2019-04-11T02:32
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Ndffaba8065c44d7aab7a1602e644262b
61 schema:url https://link.springer.com/10.1007%2Fs00170-018-2860-6
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N3309acca0b6a48f7917f5272a82da057 rdf:first sg:person.015024445160.06
66 rdf:rest Nd7aa479a69c144b582214b8e760c2d08
67 N46e246ad84b449739421cc513a180f07 schema:name dimensions_id
68 schema:value pub.1107740496
69 rdf:type schema:PropertyValue
70 N89fdc0fb8f30446090cffdaf7f42df04 rdf:first sg:person.016514130114.92
71 rdf:rest rdf:nil
72 Nb6a5844c73784cf38876767b51e67e14 schema:name doi
73 schema:value 10.1007/s00170-018-2860-6
74 rdf:type schema:PropertyValue
75 Nc796a0defe9f4fcd953f481445ef0d59 rdf:first sg:person.0607031744.38
76 rdf:rest N89fdc0fb8f30446090cffdaf7f42df04
77 Nd7aa479a69c144b582214b8e760c2d08 rdf:first sg:person.07547104325.47
78 rdf:rest Nc796a0defe9f4fcd953f481445ef0d59
79 Ndffaba8065c44d7aab7a1602e644262b schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Ne1f684263d434860b343bd7b72cd59e9 schema:name readcube_id
82 schema:value 61ca1e62235fab5674f57dd0381cfcb4c7c2b9fa489eb73204d20cccb7c0bc60
83 rdf:type schema:PropertyValue
84 Nf9590fc8ac684b3980947adc016678b2 rdf:first sg:person.01332436044.09
85 rdf:rest N3309acca0b6a48f7917f5272a82da057
86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
87 schema:name Mathematical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
90 schema:name Numerical and Computational Mathematics
91 rdf:type schema:DefinedTerm
92 sg:journal.1043671 schema:issn 0268-3768
93 1433-3015
94 schema:name The International Journal of Advanced Manufacturing Technology
95 rdf:type schema:Periodical
96 sg:person.01332436044.09 schema:affiliation https://www.grid.ac/institutes/grid.69474.38
97 schema:familyName Bukala
98 schema:givenName Jakub
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332436044.09
100 rdf:type schema:Person
101 sg:person.015024445160.06 schema:affiliation https://www.grid.ac/institutes/grid.69474.38
102 schema:familyName Damaziak
103 schema:givenName Krzysztof
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015024445160.06
105 rdf:type schema:Person
106 sg:person.016514130114.92 schema:affiliation https://www.grid.ac/institutes/grid.23048.3d
107 schema:familyName Robbersmyr
108 schema:givenName Kjell Gunnar
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016514130114.92
110 rdf:type schema:Person
111 sg:person.0607031744.38 schema:affiliation https://www.grid.ac/institutes/grid.69474.38
112 schema:familyName Malachowski
113 schema:givenName Jerzy
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607031744.38
115 rdf:type schema:Person
116 sg:person.07547104325.47 schema:affiliation https://www.grid.ac/institutes/grid.4643.5
117 schema:familyName Karimi
118 schema:givenName Hamid Reza
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07547104325.47
120 rdf:type schema:Person
121 sg:pub.10.1007/978-3-642-22938-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018319237
122 https://doi.org/10.1007/978-3-642-22938-1
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf01743506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030998905
125 https://doi.org/10.1007/bf01743506
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/bf01759923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035612342
128 https://doi.org/10.1007/bf01759923
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s00158-003-0368-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011264351
131 https://doi.org/10.1007/s00158-003-0368-6
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s00170-017-0098-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083917123
134 https://doi.org/10.1007/s00170-017-0098-3
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s00170-017-1125-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091915707
137 https://doi.org/10.1007/s00170-017-1125-0
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s11044-011-9271-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006854038
140 https://doi.org/10.1007/s11044-011-9271-x
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s40095-014-0128-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1045402532
143 https://doi.org/10.1007/s40095-014-0128-y
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.apenergy.2014.12.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020752576
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.apm.2015.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041086848
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.compstruct.2016.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028621685
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.compstruct.2016.12.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016306589
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.energy.2016.11.087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043025929
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.engstruct.2006.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029735202
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.engstruct.2015.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019890809
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.ijhydene.2008.04.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003437714
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.ijhydene.2015.04.140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017238514
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.jweia.2015.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015677573
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.jweia.2016.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000213637
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.matdes.2012.10.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013534134
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.procir.2015.01.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000583556
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.renene.2014.12.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011003688
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.renene.2015.05.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047760569
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.renene.2015.08.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042495369
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.renene.2015.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042054973
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.renene.2015.10.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050765340
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.renene.2016.01.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049332209
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.renene.2017.08.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091210104
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0045-7949(02)00027-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000623106
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0045-7949(99)00079-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018221665
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1108/hff-06-2015-0246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026563225
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/tsmc.1986.289288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061793830
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/tste.2010.2046919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061806300
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1162/evco.1994.2.3.221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026010259
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1260/0309-524x.34.5.561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064577876
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1260/030952406779994150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064578505
200 rdf:type schema:CreativeWork
201 https://doi.org/10.12989/was.2016.23.6.577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064866787
202 rdf:type schema:CreativeWork
203 https://doi.org/10.2514/6.2006-786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049369357
204 rdf:type schema:CreativeWork
205 https://doi.org/10.4236/eng.2010.28082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010685687
206 rdf:type schema:CreativeWork
207 https://doi.org/10.5772/63481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022209628
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.23048.3d schema:alternateName University of Agder
210 schema:name Department of Engineering Sciences, University of Agder, Jon Lilletunsvei 9, Grimstad, Norway
211 rdf:type schema:Organization
212 https://www.grid.ac/institutes/grid.4643.5 schema:alternateName Polytechnic University of Milan
213 schema:name Department of Mechanical Engineering, Politecnico di Milano, Via Giuseppe La Masa, 1, 20156, Milan, Italy
214 rdf:type schema:Organization
215 https://www.grid.ac/institutes/grid.69474.38 schema:alternateName Military University of Technology in Warsaw
216 schema:name Department of Mechanics and Applied Computer Science, Faculty of Mechanical Engineering, Military University of Technology, Gen. Witolda Urbanowicza 2, 00-908, Warsaw, Poland
217 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...