WEDM performance and surface integrity of Inconel alloy IN718 with coated and uncoated wires View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Luca Watanabe Reolon, Carlos Augusto Henning Laurindo, Ricardo Diego Torres, Fred Lacerda Amorim

ABSTRACT

In this work, using zinc-coated copper wire and uncoated brass wire, WED machining performance of IN718 was evaluated with input process variables, the discharge duration, pulse interval time, and wire runoff speed. The output variables analyzed are wire feed rate, kerf width, and recast layer characteristics. The experimental results show that zinc-coated copper wire is better in general performance when compared with uncoated brass wire. With the optimization of WEDM process parameters for the zinc-coated copper wire, it obtained 35% increase in wire feed rate and a reduction of 40% in wire consumption. When WEDM at optimized conditions with uncoated brass wire, it was found that 36% gain on wire feed rate with 80% reduction of wire consumption. Electrode material (Cu and Zn) from both wires was incorporated in the IN718 recast layer and in direction to matrix material. The kerf width is dependent on the discharge energy and wire runoff speed. More... »

PAGES

1-11

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00170-018-2828-6

DOI

http://dx.doi.org/10.1007/s00170-018-2828-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107576349


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Manufacturing Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pontif\u00edcia Universidade Cat\u00f3lica do Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.412522.2", 
          "name": [
            "Mechanical Engineering Graduate Program \u2013 PPGEM, Pontif\u00edcia Universidade Cat\u00f3lica do Paran\u00e1 \u2013 PUCPR, Av. Imaculada Concei\u00e7\u00e3o, 1155 - Prado Velho, 80.215 901, Curitiba, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reolon", 
        "givenName": "Luca Watanabe", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pontif\u00edcia Universidade Cat\u00f3lica do Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.412522.2", 
          "name": [
            "Mechanical Engineering Graduate Program \u2013 PPGEM, Pontif\u00edcia Universidade Cat\u00f3lica do Paran\u00e1 \u2013 PUCPR, Av. Imaculada Concei\u00e7\u00e3o, 1155 - Prado Velho, 80.215 901, Curitiba, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henning Laurindo", 
        "givenName": "Carlos Augusto", 
        "id": "sg:person.015316454267.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015316454267.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pontif\u00edcia Universidade Cat\u00f3lica do Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.412522.2", 
          "name": [
            "Mechanical Engineering Graduate Program \u2013 PPGEM, Pontif\u00edcia Universidade Cat\u00f3lica do Paran\u00e1 \u2013 PUCPR, Av. Imaculada Concei\u00e7\u00e3o, 1155 - Prado Velho, 80.215 901, Curitiba, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torres", 
        "givenName": "Ricardo Diego", 
        "id": "sg:person.010725632467.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010725632467.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pontif\u00edcia Universidade Cat\u00f3lica do Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.412522.2", 
          "name": [
            "Mechanical Engineering Graduate Program \u2013 PPGEM, Pontif\u00edcia Universidade Cat\u00f3lica do Paran\u00e1 \u2013 PUCPR, Av. Imaculada Concei\u00e7\u00e3o, 1155 - Prado Velho, 80.215 901, Curitiba, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amorim", 
        "givenName": "Fred Lacerda", 
        "id": "sg:person.016423211663.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016423211663.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2008.06.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003577842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0890-6955(89)90072-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004784180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0890-6955(89)90072-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004784180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2004.08.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007235550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procir.2016.01.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023430685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2003.11.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024547403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cirp.2008.03.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024952561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1025452703", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-07206-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025452703", 
          "https://doi.org/10.1007/978-3-662-07206-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-07206-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025452703", 
          "https://doi.org/10.1007/978-3-662-07206-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2004.04.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029889459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2005.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030909315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.precisioneng.2015.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031917287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procir.2013.03.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032220872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-0136(98)00314-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036890471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.343994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057952244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.353942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057970470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2017.12.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099673021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2017.12.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099673021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-018-3239-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101185707", 
          "https://doi.org/10.1007/s11665-018-3239-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-018-3239-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101185707", 
          "https://doi.org/10.1007/s11665-018-3239-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-018-3239-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101185707", 
          "https://doi.org/10.1007/s11665-018-3239-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2018.03.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101624173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jestch.2018.03.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103158050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procir.2017.12.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103609337"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "In this work, using zinc-coated copper wire and uncoated brass wire, WED machining performance of IN718 was evaluated with input process variables, the discharge duration, pulse interval time, and wire runoff speed. The output variables analyzed are wire feed rate, kerf width, and recast layer characteristics. The experimental results show that zinc-coated copper wire is better in general performance when compared with uncoated brass wire. With the optimization of WEDM process parameters for the zinc-coated copper wire, it obtained 35% increase in wire feed rate and a reduction of 40% in wire consumption. When WEDM at optimized conditions with uncoated brass wire, it was found that 36% gain on wire feed rate with 80% reduction of wire consumption. Electrode material (Cu and Zn) from both wires was incorporated in the IN718 recast layer and in direction to matrix material. The kerf width is dependent on the discharge energy and wire runoff speed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00170-018-2828-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043671", 
        "issn": [
          "0268-3768", 
          "1433-3015"
        ], 
        "name": "The International Journal of Advanced Manufacturing Technology", 
        "type": "Periodical"
      }
    ], 
    "name": "WEDM performance and surface integrity of Inconel alloy IN718 with coated and uncoated wires", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1a6c94a25381015fde9f3afee90a50339c61f1094a7f2eafe6a603c94a2d9866"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00170-018-2828-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107576349"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00170-018-2828-6", 
      "https://app.dimensions.ai/details/publication/pub.1107576349"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000560.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00170-018-2828-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-2828-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-2828-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-2828-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-2828-6'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      45 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00170-018-2828-6 schema:about anzsrc-for:09
2 anzsrc-for:0910
3 schema:author N4e960f13dba6422289e02ae640c3fdcc
4 schema:citation sg:pub.10.1007/978-3-662-07206-6
5 sg:pub.10.1007/s11665-018-3239-4
6 https://app.dimensions.ai/details/publication/pub.1025452703
7 https://doi.org/10.1016/0890-6955(89)90072-2
8 https://doi.org/10.1016/j.cirp.2008.03.054
9 https://doi.org/10.1016/j.ijmachtools.2004.04.017
10 https://doi.org/10.1016/j.ijmachtools.2005.03.003
11 https://doi.org/10.1016/j.jestch.2018.03.018
12 https://doi.org/10.1016/j.jmatprotec.2003.11.060
13 https://doi.org/10.1016/j.jmatprotec.2004.08.026
14 https://doi.org/10.1016/j.jmatprotec.2008.06.040
15 https://doi.org/10.1016/j.msea.2017.12.043
16 https://doi.org/10.1016/j.msea.2018.03.073
17 https://doi.org/10.1016/j.precisioneng.2015.10.004
18 https://doi.org/10.1016/j.procir.2013.03.046
19 https://doi.org/10.1016/j.procir.2016.01.026
20 https://doi.org/10.1016/j.procir.2017.12.064
21 https://doi.org/10.1016/s0924-0136(98)00314-8
22 https://doi.org/10.1063/1.343994
23 https://doi.org/10.1063/1.353942
24 schema:datePublished 2019-02
25 schema:datePublishedReg 2019-02-01
26 schema:description In this work, using zinc-coated copper wire and uncoated brass wire, WED machining performance of IN718 was evaluated with input process variables, the discharge duration, pulse interval time, and wire runoff speed. The output variables analyzed are wire feed rate, kerf width, and recast layer characteristics. The experimental results show that zinc-coated copper wire is better in general performance when compared with uncoated brass wire. With the optimization of WEDM process parameters for the zinc-coated copper wire, it obtained 35% increase in wire feed rate and a reduction of 40% in wire consumption. When WEDM at optimized conditions with uncoated brass wire, it was found that 36% gain on wire feed rate with 80% reduction of wire consumption. Electrode material (Cu and Zn) from both wires was incorporated in the IN718 recast layer and in direction to matrix material. The kerf width is dependent on the discharge energy and wire runoff speed.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf sg:journal.1043671
31 schema:name WEDM performance and surface integrity of Inconel alloy IN718 with coated and uncoated wires
32 schema:pagination 1-11
33 schema:productId N2d7c736a69ba4b8aae101e9d5cec2b54
34 N31d0587719dd49e487323a944de6a37e
35 N7b0ad19cb8b94333ac67c0aff538ac2e
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107576349
37 https://doi.org/10.1007/s00170-018-2828-6
38 schema:sdDatePublished 2019-04-10T19:16
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nb1a5c06aff224ea59539224dab325bb6
41 schema:url https://link.springer.com/10.1007%2Fs00170-018-2828-6
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N1b0b0b3129fc4f189ed325b6f382028c rdf:first sg:person.015316454267.67
46 rdf:rest Nce69a007eb9d4056905cabdf30d1a100
47 N1cc487cfac684090a956a8ba7dc4650b schema:affiliation https://www.grid.ac/institutes/grid.412522.2
48 schema:familyName Reolon
49 schema:givenName Luca Watanabe
50 rdf:type schema:Person
51 N2d7c736a69ba4b8aae101e9d5cec2b54 schema:name readcube_id
52 schema:value 1a6c94a25381015fde9f3afee90a50339c61f1094a7f2eafe6a603c94a2d9866
53 rdf:type schema:PropertyValue
54 N31d0587719dd49e487323a944de6a37e schema:name doi
55 schema:value 10.1007/s00170-018-2828-6
56 rdf:type schema:PropertyValue
57 N4e960f13dba6422289e02ae640c3fdcc rdf:first N1cc487cfac684090a956a8ba7dc4650b
58 rdf:rest N1b0b0b3129fc4f189ed325b6f382028c
59 N69d8edb7b71f4b048b4adfbeb8e9d194 rdf:first sg:person.016423211663.39
60 rdf:rest rdf:nil
61 N7b0ad19cb8b94333ac67c0aff538ac2e schema:name dimensions_id
62 schema:value pub.1107576349
63 rdf:type schema:PropertyValue
64 Nb1a5c06aff224ea59539224dab325bb6 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nce69a007eb9d4056905cabdf30d1a100 rdf:first sg:person.010725632467.01
67 rdf:rest N69d8edb7b71f4b048b4adfbeb8e9d194
68 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
69 schema:name Engineering
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
72 schema:name Manufacturing Engineering
73 rdf:type schema:DefinedTerm
74 sg:journal.1043671 schema:issn 0268-3768
75 1433-3015
76 schema:name The International Journal of Advanced Manufacturing Technology
77 rdf:type schema:Periodical
78 sg:person.010725632467.01 schema:affiliation https://www.grid.ac/institutes/grid.412522.2
79 schema:familyName Torres
80 schema:givenName Ricardo Diego
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010725632467.01
82 rdf:type schema:Person
83 sg:person.015316454267.67 schema:affiliation https://www.grid.ac/institutes/grid.412522.2
84 schema:familyName Henning Laurindo
85 schema:givenName Carlos Augusto
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015316454267.67
87 rdf:type schema:Person
88 sg:person.016423211663.39 schema:affiliation https://www.grid.ac/institutes/grid.412522.2
89 schema:familyName Amorim
90 schema:givenName Fred Lacerda
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016423211663.39
92 rdf:type schema:Person
93 sg:pub.10.1007/978-3-662-07206-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025452703
94 https://doi.org/10.1007/978-3-662-07206-6
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s11665-018-3239-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101185707
97 https://doi.org/10.1007/s11665-018-3239-4
98 rdf:type schema:CreativeWork
99 https://app.dimensions.ai/details/publication/pub.1025452703 schema:CreativeWork
100 https://doi.org/10.1016/0890-6955(89)90072-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004784180
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.cirp.2008.03.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024952561
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.ijmachtools.2004.04.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029889459
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.ijmachtools.2005.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030909315
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.jestch.2018.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103158050
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.jmatprotec.2003.11.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024547403
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.jmatprotec.2004.08.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007235550
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.jmatprotec.2008.06.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003577842
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.msea.2017.12.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099673021
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.msea.2018.03.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101624173
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.precisioneng.2015.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031917287
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.procir.2013.03.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032220872
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.procir.2016.01.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023430685
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.procir.2017.12.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103609337
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0924-0136(98)00314-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036890471
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1063/1.343994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057952244
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1063/1.353942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057970470
133 rdf:type schema:CreativeWork
134 https://www.grid.ac/institutes/grid.412522.2 schema:alternateName Pontifícia Universidade Católica do Paraná
135 schema:name Mechanical Engineering Graduate Program – PPGEM, Pontifícia Universidade Católica do Paraná – PUCPR, Av. Imaculada Conceição, 1155 - Prado Velho, 80.215 901, Curitiba, Brazil
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...