Influence of minimum quantity of lubrication (MQL) when turning hardened SAE 1045 steel: a comparison with dry machining View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

Marco Aurélio Sampaio, Álisson Rocha Machado, Carlos Augusto Henning Laurindo, Ricardo Diego Torres, Fred Lacerda Amorim

ABSTRACT

Minimum quantity of lubrication (MQL) is an efficient practice in machining of soft materials. Its application during machining of hard materials has not yet been completely explored in scientific research. This work evaluates the wear process of PCBN cutting tools, as well as machining forces, workpiece surface roughness and white layer depth, chip morphology, and chip microstructure in hard turning of induction hardened SAE1045 steel using MQL and compared to dry machining. Results demonstrated that for all the experiments (MQL and dry machining), the abrasive wear was the prevailing mechanism, where the tool wear modes were flank wear and crater wear. Notch wear was observed on both at the end of contact in the secondary cutting edge and at the end of the depth of cut. Secondary notch wear affects the white layer formation and increases the workpiece surface roughness. After a certain period along the cutting time, a reduction in the roughness with an increase in the average flank wear was also observed when using MQL. The use of MQL, despite reducing the average flank wear, increased the notch wear at the secondary cutting edge, and consequently increased the surface roughness. In regard to crater wear, the MQL reduced its occurrence. MQL provided better results than dry machining concerning the machining forces, as well as reduced the white layer occurrence. More... »

PAGES

959-968

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00170-018-2342-x

DOI

http://dx.doi.org/10.1007/s00170-018-2342-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104694814


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pontif\u00edcia Universidade Cat\u00f3lica do Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.412522.2", 
          "name": [
            "Mechanical Engineering Graduate Program \u2013 PPGEM, Pontif\u00edcia Universidade Cat\u00f3lica do Paran\u00e1 \u2013 PUCPR, Av. Imaculada Concei\u00e7\u00e3o, 1155 - Prado Velho, 80, 215 901, Curitiba, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sampaio", 
        "givenName": "Marco Aur\u00e9lio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Uberl\u00e2ndia", 
          "id": "https://www.grid.ac/institutes/grid.411284.a", 
          "name": [
            "Mechanical Engineering Graduate Program \u2013 PPGEM, Pontif\u00edcia Universidade Cat\u00f3lica do Paran\u00e1 \u2013 PUCPR, Av. Imaculada Concei\u00e7\u00e3o, 1155 - Prado Velho, 80, 215 901, Curitiba, Brazil", 
            "Universidade Federal de Uberl\u00e2ndia \u2013 UFU, LEPU/FEMEC, 38, 400 902, Uberl\u00e2ndia, MG, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Machado", 
        "givenName": "\u00c1lisson Rocha", 
        "id": "sg:person.012225570255.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012225570255.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pontif\u00edcia Universidade Cat\u00f3lica do Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.412522.2", 
          "name": [
            "Mechanical Engineering Graduate Program \u2013 PPGEM, Pontif\u00edcia Universidade Cat\u00f3lica do Paran\u00e1 \u2013 PUCPR, Av. Imaculada Concei\u00e7\u00e3o, 1155 - Prado Velho, 80, 215 901, Curitiba, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laurindo", 
        "givenName": "Carlos Augusto Henning", 
        "id": "sg:person.015316454267.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015316454267.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pontif\u00edcia Universidade Cat\u00f3lica do Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.412522.2", 
          "name": [
            "Mechanical Engineering Graduate Program \u2013 PPGEM, Pontif\u00edcia Universidade Cat\u00f3lica do Paran\u00e1 \u2013 PUCPR, Av. Imaculada Concei\u00e7\u00e3o, 1155 - Prado Velho, 80, 215 901, Curitiba, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torres", 
        "givenName": "Ricardo Diego", 
        "id": "sg:person.010725632467.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010725632467.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pontif\u00edcia Universidade Cat\u00f3lica do Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.412522.2", 
          "name": [
            "Mechanical Engineering Graduate Program \u2013 PPGEM, Pontif\u00edcia Universidade Cat\u00f3lica do Paran\u00e1 \u2013 PUCPR, Av. Imaculada Concei\u00e7\u00e3o, 1155 - Prado Velho, 80, 215 901, Curitiba, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amorim", 
        "givenName": "Fred Lacerda", 
        "id": "sg:person.016423211663.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016423211663.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2005.09.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000090103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)62387-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000243556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2006.03.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000326161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfatigue.2009.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003285982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2005.04.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006988751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2007.10.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011438950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)63455-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011617713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2007.05.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014635355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrmhm.2014.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015096400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0890-6955(98)00084-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021934191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0890-6955(02)00186-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022148761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0890-6955(02)00186-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022148761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-015-8171-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026785902", 
          "https://doi.org/10.1007/s00170-015-8171-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wear.2004.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027328526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1648(97)00059-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034416181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.measurement.2014.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040340412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1648(03)00414-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041095992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1648(03)00414-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041095992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2011.08.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042288256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/mst.1987.3.4.299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046853781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wear.2011.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048545122"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "Minimum quantity of lubrication (MQL) is an efficient practice in machining of soft materials. Its application during machining of hard materials has not yet been completely explored in scientific research. This work evaluates the wear process of PCBN cutting tools, as well as machining forces, workpiece surface roughness and white layer depth, chip morphology, and chip microstructure in hard turning of induction hardened SAE1045 steel using MQL and compared to dry machining. Results demonstrated that for all the experiments (MQL and dry machining), the abrasive wear was the prevailing mechanism, where the tool wear modes were flank wear and crater wear. Notch wear was observed on both at the end of contact in the secondary cutting edge and at the end of the depth of cut. Secondary notch wear affects the white layer formation and increases the workpiece surface roughness. After a certain period along the cutting time, a reduction in the roughness with an increase in the average flank wear was also observed when using MQL. The use of MQL, despite reducing the average flank wear, increased the notch wear at the secondary cutting edge, and consequently increased the surface roughness. In regard to crater wear, the MQL reduced its occurrence. MQL provided better results than dry machining concerning the machining forces, as well as reduced the white layer occurrence.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00170-018-2342-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043671", 
        "issn": [
          "0268-3768", 
          "1433-3015"
        ], 
        "name": "The International Journal of Advanced Manufacturing Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "98"
      }
    ], 
    "name": "Influence of minimum quantity of lubrication (MQL) when turning hardened SAE 1045 steel: a comparison with dry machining", 
    "pagination": "959-968", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cf3cca91d69b96c0d35054c08369236cc67aa65d21a5e1f07d6a29cb8bea25af"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00170-018-2342-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104694814"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00170-018-2342-x", 
      "https://app.dimensions.ai/details/publication/pub.1104694814"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00170-018-2342-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-2342-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-2342-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-2342-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-2342-x'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00170-018-2342-x schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nfd572c1cedae44e0a50ff6620528248f
4 schema:citation sg:pub.10.1007/s00170-015-8171-2
5 https://doi.org/10.1016/j.ijfatigue.2009.07.014
6 https://doi.org/10.1016/j.ijmachtools.2006.03.015
7 https://doi.org/10.1016/j.ijmachtools.2011.08.019
8 https://doi.org/10.1016/j.ijrmhm.2014.04.014
9 https://doi.org/10.1016/j.jmatprotec.2005.04.119
10 https://doi.org/10.1016/j.jmatprotec.2005.09.022
11 https://doi.org/10.1016/j.jmatprotec.2007.05.022
12 https://doi.org/10.1016/j.jmatprotec.2007.10.027
13 https://doi.org/10.1016/j.measurement.2014.06.002
14 https://doi.org/10.1016/j.wear.2004.08.010
15 https://doi.org/10.1016/j.wear.2011.07.001
16 https://doi.org/10.1016/s0007-8506(07)62387-7
17 https://doi.org/10.1016/s0007-8506(07)63455-6
18 https://doi.org/10.1016/s0043-1648(03)00414-9
19 https://doi.org/10.1016/s0043-1648(97)00059-8
20 https://doi.org/10.1016/s0890-6955(02)00186-4
21 https://doi.org/10.1016/s0890-6955(98)00084-4
22 https://doi.org/10.1179/mst.1987.3.4.299
23 schema:datePublished 2018-09
24 schema:datePublishedReg 2018-09-01
25 schema:description Minimum quantity of lubrication (MQL) is an efficient practice in machining of soft materials. Its application during machining of hard materials has not yet been completely explored in scientific research. This work evaluates the wear process of PCBN cutting tools, as well as machining forces, workpiece surface roughness and white layer depth, chip morphology, and chip microstructure in hard turning of induction hardened SAE1045 steel using MQL and compared to dry machining. Results demonstrated that for all the experiments (MQL and dry machining), the abrasive wear was the prevailing mechanism, where the tool wear modes were flank wear and crater wear. Notch wear was observed on both at the end of contact in the secondary cutting edge and at the end of the depth of cut. Secondary notch wear affects the white layer formation and increases the workpiece surface roughness. After a certain period along the cutting time, a reduction in the roughness with an increase in the average flank wear was also observed when using MQL. The use of MQL, despite reducing the average flank wear, increased the notch wear at the secondary cutting edge, and consequently increased the surface roughness. In regard to crater wear, the MQL reduced its occurrence. MQL provided better results than dry machining concerning the machining forces, as well as reduced the white layer occurrence.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N1406fd5f01d14c1c88e1c22c4ec6b785
30 Ncf43e56122dc46058ad911f8e87b5b98
31 sg:journal.1043671
32 schema:name Influence of minimum quantity of lubrication (MQL) when turning hardened SAE 1045 steel: a comparison with dry machining
33 schema:pagination 959-968
34 schema:productId N702306ab1c9f4ecba571e50d0cc0394d
35 N7820b13491304a72b5a9ad67fb343199
36 Nda3b9617dd1e4abbb873857ff426b69b
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104694814
38 https://doi.org/10.1007/s00170-018-2342-x
39 schema:sdDatePublished 2019-04-10T15:47
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N71528e3233b845b492042bd385c12094
42 schema:url http://link.springer.com/10.1007/s00170-018-2342-x
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N1406fd5f01d14c1c88e1c22c4ec6b785 schema:issueNumber 1-4
47 rdf:type schema:PublicationIssue
48 N1fa0c4fd0b9b42ba94afe3da77077cc6 rdf:first sg:person.012225570255.61
49 rdf:rest N4e4b74f3000d48e49cd2183ee5c290e9
50 N390776317be340c2a8d6b6ce09645a85 rdf:first sg:person.010725632467.01
51 rdf:rest N3bca0ee9254f45059dcb30d1c231eec6
52 N3bca0ee9254f45059dcb30d1c231eec6 rdf:first sg:person.016423211663.39
53 rdf:rest rdf:nil
54 N4e4b74f3000d48e49cd2183ee5c290e9 rdf:first sg:person.015316454267.67
55 rdf:rest N390776317be340c2a8d6b6ce09645a85
56 N702306ab1c9f4ecba571e50d0cc0394d schema:name doi
57 schema:value 10.1007/s00170-018-2342-x
58 rdf:type schema:PropertyValue
59 N71528e3233b845b492042bd385c12094 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N7820b13491304a72b5a9ad67fb343199 schema:name readcube_id
62 schema:value cf3cca91d69b96c0d35054c08369236cc67aa65d21a5e1f07d6a29cb8bea25af
63 rdf:type schema:PropertyValue
64 Nc7daf1dae12a4bf2a4cb57cdd8ad6350 schema:affiliation https://www.grid.ac/institutes/grid.412522.2
65 schema:familyName Sampaio
66 schema:givenName Marco Aurélio
67 rdf:type schema:Person
68 Ncf43e56122dc46058ad911f8e87b5b98 schema:volumeNumber 98
69 rdf:type schema:PublicationVolume
70 Nda3b9617dd1e4abbb873857ff426b69b schema:name dimensions_id
71 schema:value pub.1104694814
72 rdf:type schema:PropertyValue
73 Nfd572c1cedae44e0a50ff6620528248f rdf:first Nc7daf1dae12a4bf2a4cb57cdd8ad6350
74 rdf:rest N1fa0c4fd0b9b42ba94afe3da77077cc6
75 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
76 schema:name Engineering
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
79 schema:name Materials Engineering
80 rdf:type schema:DefinedTerm
81 sg:journal.1043671 schema:issn 0268-3768
82 1433-3015
83 schema:name The International Journal of Advanced Manufacturing Technology
84 rdf:type schema:Periodical
85 sg:person.010725632467.01 schema:affiliation https://www.grid.ac/institutes/grid.412522.2
86 schema:familyName Torres
87 schema:givenName Ricardo Diego
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010725632467.01
89 rdf:type schema:Person
90 sg:person.012225570255.61 schema:affiliation https://www.grid.ac/institutes/grid.411284.a
91 schema:familyName Machado
92 schema:givenName Álisson Rocha
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012225570255.61
94 rdf:type schema:Person
95 sg:person.015316454267.67 schema:affiliation https://www.grid.ac/institutes/grid.412522.2
96 schema:familyName Laurindo
97 schema:givenName Carlos Augusto Henning
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015316454267.67
99 rdf:type schema:Person
100 sg:person.016423211663.39 schema:affiliation https://www.grid.ac/institutes/grid.412522.2
101 schema:familyName Amorim
102 schema:givenName Fred Lacerda
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016423211663.39
104 rdf:type schema:Person
105 sg:pub.10.1007/s00170-015-8171-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026785902
106 https://doi.org/10.1007/s00170-015-8171-2
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.ijfatigue.2009.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003285982
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.ijmachtools.2006.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000326161
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.ijmachtools.2011.08.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042288256
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.ijrmhm.2014.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015096400
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.jmatprotec.2005.04.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006988751
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.jmatprotec.2005.09.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000090103
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.jmatprotec.2007.05.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014635355
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.jmatprotec.2007.10.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011438950
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.measurement.2014.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040340412
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.wear.2004.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027328526
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.wear.2011.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048545122
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0007-8506(07)62387-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000243556
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0007-8506(07)63455-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011617713
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0043-1648(03)00414-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041095992
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0043-1648(97)00059-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034416181
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0890-6955(02)00186-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022148761
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0890-6955(98)00084-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021934191
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1179/mst.1987.3.4.299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046853781
143 rdf:type schema:CreativeWork
144 https://www.grid.ac/institutes/grid.411284.a schema:alternateName Federal University of Uberlândia
145 schema:name Mechanical Engineering Graduate Program – PPGEM, Pontifícia Universidade Católica do Paraná – PUCPR, Av. Imaculada Conceição, 1155 - Prado Velho, 80, 215 901, Curitiba, Brazil
146 Universidade Federal de Uberlândia – UFU, LEPU/FEMEC, 38, 400 902, Uberlândia, MG, Brazil
147 rdf:type schema:Organization
148 https://www.grid.ac/institutes/grid.412522.2 schema:alternateName Pontifícia Universidade Católica do Paraná
149 schema:name Mechanical Engineering Graduate Program – PPGEM, Pontifícia Universidade Católica do Paraná – PUCPR, Av. Imaculada Conceição, 1155 - Prado Velho, 80, 215 901, Curitiba, Brazil
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...