Heat distribution in electric hot incremental sheet forming View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

P. A. P. Pacheco, M. E. Silveira, J. A. Silva

ABSTRACT

Electric hot incremental sheet forming (EHISF) is a technique based on the use of electric current to heat the metal sheet, it consists of a source of direct current (transformer), cables, tool, and plate constituting a closed circuit. According to Joule’s law, when the current travels from the tool to the plate, the current density generates heat. It is known that the mechanical and metallurgical proprieties of the materials are highly influenced by the temperature. Then it is important to know how the distribution of heat near the mobile heat source occurs. Recently, some researchers have suggested different techniques for calculating heat distribution as a function of a mobile source. In this paper, it discusses the temperature distributions when the source moves in relation to the conductive medium, comparing the equation proposal by Bejan the numerical simulation using an explicit finite element method, which has a suitable formulation for inserting the effects of temperature and strain rate in the material. The results show that for the conditions evaluated the model proposed by Bejan (Eq. 4) is very close to the results obtained by the numerical simulation. Moreover, as EHISF is a process with large deformations and time-consuming, it would be necessary to include the terms of the energy of plastic deformation (E) and also the loss by convection to better represent the distribution of heat in the plate. More... »

PAGES

1-8

References to SciGraph publications

  • 2011-04. An analytical solution to heat conduction with a moving heat source in JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY
  • 2013-08. A novel approach for temperature control in ISF supported by laser and resistance heating in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2018-02. Numerical simulation of electric hot incremental sheet forming of 1050 aluminum with and without preheating in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2018-04. Effect of temperatures during forming in single point incremental forming in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2014-05. Numerical simulation and experimental investigation to improve the dimensional accuracy in electric hot incremental forming of Ti–6Al–4V titanium sheet in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2010-08. Electric hot incremental forming of Ti-6Al-4V titanium sheet in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00170-018-03228-2

    DOI

    http://dx.doi.org/10.1007/s00170-018-03228-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111210662


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Federal Institute of Southeast of MG, Santos Dumont, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pacheco", 
            "givenName": "P. A. P.", 
            "id": "sg:person.013274447467.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013274447467.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Federal University of S\u00e3o Jo\u00e3o del-Rei", 
              "id": "https://www.grid.ac/institutes/grid.428481.3", 
              "name": [
                "Federal University of S\u00e3o Jo\u00e3o del Rei, S\u00e3o Jo\u00e3o del Rei, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Silveira", 
            "givenName": "M. E.", 
            "id": "sg:person.07557300267.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07557300267.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Federal University of S\u00e3o Jo\u00e3o del-Rei", 
              "id": "https://www.grid.ac/institutes/grid.428481.3", 
              "name": [
                "Federal University of S\u00e3o Jo\u00e3o del Rei, S\u00e3o Jo\u00e3o del Rei, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Silva", 
            "givenName": "J. A.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2009.09.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001458221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-012-4640-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004199883", 
              "https://doi.org/10.1007/s00170-012-4640-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12206-011-0214-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019273039", 
              "https://doi.org/10.1007/s12206-011-0214-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-014-5769-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023157984", 
              "https://doi.org/10.1007/s00170-014-5769-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2008.07.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032773391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2298/tsci1101257i", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033725042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-009-2472-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033905783", 
              "https://doi.org/10.1007/s00170-009-2472-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-009-2472-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033905783", 
              "https://doi.org/10.1007/s00170-009-2472-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046328156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1243/09544054jem957", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064449114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1243/09544054jem957", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064449114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-0879-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091210038", 
              "https://doi.org/10.1007/s00170-017-0879-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-0879-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091210038", 
              "https://doi.org/10.1007/s00170-017-0879-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-1400-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099708618", 
              "https://doi.org/10.1007/s00170-017-1400-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-05", 
        "datePublishedReg": "2019-05-01", 
        "description": "Electric hot incremental sheet forming (EHISF) is a technique based on the use of electric current to heat the metal sheet, it consists of a source of direct current (transformer), cables, tool, and plate constituting a closed circuit. According to Joule\u2019s law, when the current travels from the tool to the plate, the current density generates heat. It is known that the mechanical and metallurgical proprieties of the materials are highly influenced by the temperature. Then it is important to know how the distribution of heat near the mobile heat source occurs. Recently, some researchers have suggested different techniques for calculating heat distribution as a function of a mobile source. In this paper, it discusses the temperature distributions when the source moves in relation to the conductive medium, comparing the equation proposal by Bejan the numerical simulation using an explicit finite element method, which has a suitable formulation for inserting the effects of temperature and strain rate in the material. The results show that for the conditions evaluated the model proposed by Bejan (Eq. 4) is very close to the results obtained by the numerical simulation. Moreover, as EHISF is a process with large deformations and time-consuming, it would be necessary to include the terms of the energy of plastic deformation (E) and also the loss by convection to better represent the distribution of heat in the plate.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00170-018-03228-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043671", 
            "issn": [
              "0268-3768", 
              "1433-3015"
            ], 
            "name": "The International Journal of Advanced Manufacturing Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "102"
          }
        ], 
        "name": "Heat distribution in electric hot incremental sheet forming", 
        "pagination": "1-8", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b9369a2444567d94a8a3d72cc07cc6037713622a4178282f8888c4c286214a71"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00170-018-03228-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111210662"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00170-018-03228-2", 
          "https://app.dimensions.ai/details/publication/pub.1111210662"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130794_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00170-018-03228-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-03228-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-03228-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-03228-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-03228-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    115 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00170-018-03228-2 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N6e6faa1dc6bb459a9fda2920bfc079e0
    4 schema:citation sg:pub.10.1007/s00170-009-2472-2
    5 sg:pub.10.1007/s00170-012-4640-z
    6 sg:pub.10.1007/s00170-014-5769-8
    7 sg:pub.10.1007/s00170-017-0879-8
    8 sg:pub.10.1007/s00170-017-1400-0
    9 sg:pub.10.1007/s12206-011-0214-5
    10 https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.023
    11 https://doi.org/10.1016/j.ijmachtools.2008.07.010
    12 https://doi.org/10.1016/j.jmatprotec.2009.09.018
    13 https://doi.org/10.1243/09544054jem957
    14 https://doi.org/10.2298/tsci1101257i
    15 schema:datePublished 2019-05
    16 schema:datePublishedReg 2019-05-01
    17 schema:description Electric hot incremental sheet forming (EHISF) is a technique based on the use of electric current to heat the metal sheet, it consists of a source of direct current (transformer), cables, tool, and plate constituting a closed circuit. According to Joule’s law, when the current travels from the tool to the plate, the current density generates heat. It is known that the mechanical and metallurgical proprieties of the materials are highly influenced by the temperature. Then it is important to know how the distribution of heat near the mobile heat source occurs. Recently, some researchers have suggested different techniques for calculating heat distribution as a function of a mobile source. In this paper, it discusses the temperature distributions when the source moves in relation to the conductive medium, comparing the equation proposal by Bejan the numerical simulation using an explicit finite element method, which has a suitable formulation for inserting the effects of temperature and strain rate in the material. The results show that for the conditions evaluated the model proposed by Bejan (Eq. 4) is very close to the results obtained by the numerical simulation. Moreover, as EHISF is a process with large deformations and time-consuming, it would be necessary to include the terms of the energy of plastic deformation (E) and also the loss by convection to better represent the distribution of heat in the plate.
    18 schema:genre research_article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf Nc1b87e20ed1d4a0798f65e7394a31eda
    22 Ne37cc22523cd478790f266cf10639f1d
    23 sg:journal.1043671
    24 schema:name Heat distribution in electric hot incremental sheet forming
    25 schema:pagination 1-8
    26 schema:productId N3153cc4f99ec4c358edc9c9da3b75be3
    27 N5d4e40b83fc848419686c7a3af1ed4a3
    28 Ne79f264de5ef45d591c80001f4a04650
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111210662
    30 https://doi.org/10.1007/s00170-018-03228-2
    31 schema:sdDatePublished 2019-04-11T13:50
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher N3f55af4c338d4aa9a2c81ca5bb99b52d
    34 schema:url https://link.springer.com/10.1007%2Fs00170-018-03228-2
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset articles
    37 rdf:type schema:ScholarlyArticle
    38 N1524f9a60a204c2b9e51ca56601d40b2 rdf:first sg:person.07557300267.49
    39 rdf:rest N169024983547415e965dad3eb4f7ecb0
    40 N169024983547415e965dad3eb4f7ecb0 rdf:first N941e15555b8b406ba3f3cc9d19efab80
    41 rdf:rest rdf:nil
    42 N2ae9ca5a43f9436c9e62a42bcb05a091 schema:name Federal Institute of Southeast of MG, Santos Dumont, Brazil
    43 rdf:type schema:Organization
    44 N3153cc4f99ec4c358edc9c9da3b75be3 schema:name readcube_id
    45 schema:value b9369a2444567d94a8a3d72cc07cc6037713622a4178282f8888c4c286214a71
    46 rdf:type schema:PropertyValue
    47 N3f55af4c338d4aa9a2c81ca5bb99b52d schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 N5d4e40b83fc848419686c7a3af1ed4a3 schema:name dimensions_id
    50 schema:value pub.1111210662
    51 rdf:type schema:PropertyValue
    52 N6e6faa1dc6bb459a9fda2920bfc079e0 rdf:first sg:person.013274447467.39
    53 rdf:rest N1524f9a60a204c2b9e51ca56601d40b2
    54 N941e15555b8b406ba3f3cc9d19efab80 schema:affiliation https://www.grid.ac/institutes/grid.428481.3
    55 schema:familyName Silva
    56 schema:givenName J. A.
    57 rdf:type schema:Person
    58 Nc1b87e20ed1d4a0798f65e7394a31eda schema:issueNumber 1-4
    59 rdf:type schema:PublicationIssue
    60 Ne37cc22523cd478790f266cf10639f1d schema:volumeNumber 102
    61 rdf:type schema:PublicationVolume
    62 Ne79f264de5ef45d591c80001f4a04650 schema:name doi
    63 schema:value 10.1007/s00170-018-03228-2
    64 rdf:type schema:PropertyValue
    65 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Engineering
    67 rdf:type schema:DefinedTerm
    68 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Materials Engineering
    70 rdf:type schema:DefinedTerm
    71 sg:journal.1043671 schema:issn 0268-3768
    72 1433-3015
    73 schema:name The International Journal of Advanced Manufacturing Technology
    74 rdf:type schema:Periodical
    75 sg:person.013274447467.39 schema:affiliation N2ae9ca5a43f9436c9e62a42bcb05a091
    76 schema:familyName Pacheco
    77 schema:givenName P. A. P.
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013274447467.39
    79 rdf:type schema:Person
    80 sg:person.07557300267.49 schema:affiliation https://www.grid.ac/institutes/grid.428481.3
    81 schema:familyName Silveira
    82 schema:givenName M. E.
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07557300267.49
    84 rdf:type schema:Person
    85 sg:pub.10.1007/s00170-009-2472-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033905783
    86 https://doi.org/10.1007/s00170-009-2472-2
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/s00170-012-4640-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1004199883
    89 https://doi.org/10.1007/s00170-012-4640-z
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/s00170-014-5769-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023157984
    92 https://doi.org/10.1007/s00170-014-5769-8
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/s00170-017-0879-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091210038
    95 https://doi.org/10.1007/s00170-017-0879-8
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/s00170-017-1400-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099708618
    98 https://doi.org/10.1007/s00170-017-1400-0
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/s12206-011-0214-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019273039
    101 https://doi.org/10.1007/s12206-011-0214-5
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046328156
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/j.ijmachtools.2008.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032773391
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/j.jmatprotec.2009.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001458221
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1243/09544054jem957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064449114
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.2298/tsci1101257i schema:sameAs https://app.dimensions.ai/details/publication/pub.1033725042
    112 rdf:type schema:CreativeWork
    113 https://www.grid.ac/institutes/grid.428481.3 schema:alternateName Federal University of São João del-Rei
    114 schema:name Federal University of São João del Rei, São João del Rei, Brazil
    115 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...