Energy efficiency evaluation of metal laser direct deposition based on process characteristics and empirical modeling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Wen Liu, Haiying Wei, Chu Huang, Fengbo Yuan, Yi Zhang

ABSTRACT

Metal laser direct deposition (MLDD) is a typical process in additive manufacturing (AM), which permits the build of complex and fully dense metallic parts by using laser to melt the metal powder layer by layer. However, the process is characterized by high energy consumption and low energy efficiency. This paper established an empirical model to characterize the relationship between process parameters and energy efficiency for MLDD based on the essence of thermodynamics physical energy conversion. Additionally, a recognition method of cross-sectional profile of the deposited layer was achieved by adding tungsten carbide (WC) powder, which greatly improved the measurement reliability. Taguchi experiment and regression identification method were applied, and the relative error of the model was less than 10%. The results show that laser power has significant influence on the process energy efficiency of MLDD. The energy efficiency of single-track multi-layer stacking (SMS) process and multi-track single-layer lapping (MSL) process increased by 5.7% and 50.3%, respectively, under the optimal process parameter condition. The proposed model can be used effectively for the energy efficiency evaluation and offer the potential for improving the sustainability of MLDD. More... »

PAGES

1-13

References to SciGraph publications

  • 2017-09. Additive manufacturing tooling for the automotive industry in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2016. A New Variant of Genetic Programming in Formulation of Laser Energy Consumption Model of 3D Printing Process in HANDBOOK OF SUSTAINABILITY IN ADDITIVE MANUFACTURING
  • 2014-07. A comparison of energy consumption in bulk forming, subtractive, and additive processes: Review and case study in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY
  • 2017-03. Investigation on direct laser powder deposition of 18 Ni (300) marage steel using mathematical model and experimental characterisation in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2014-08. On a generalized approach to manufacturing energy efficiency in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2016-05. Effect of Energy Input on the Characteristic of AISI H13 and D2 Tool Steels Deposited by a Directed Energy Deposition Process in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2017-02. Energy consumption modeling of machining transient states based on finite state machine in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2018-03. On the energy efficiency of pre-heating methods in SLM/SLS processes in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2018-08. Closed-loop control of variable width deposition in laser metal deposition in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2004-02. Process efficiency measurements in the laser engineered net shaping process in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2018-09. A life cycle assessment-based approach for evaluating the influence of total build height and batch size on the environmental performance of electron beam melting in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00170-018-03220-w

    DOI

    http://dx.doi.org/10.1007/s00170-018-03220-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111160080


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Manufacturing Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Hunan University", 
              "id": "https://www.grid.ac/institutes/grid.67293.39", 
              "name": [
                "State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, 410082, Changsha, China", 
                "Key Laboratory for Intelligent Laser Manufacturing of Hunan Province, Hunan University, 410082, Changsha, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Wen", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hunan University", 
              "id": "https://www.grid.ac/institutes/grid.67293.39", 
              "name": [
                "State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, 410082, Changsha, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wei", 
            "givenName": "Haiying", 
            "id": "sg:person.013763473165.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013763473165.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hunan University", 
              "id": "https://www.grid.ac/institutes/grid.67293.39", 
              "name": [
                "State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, 410082, Changsha, China", 
                "Key Laboratory for Intelligent Laser Manufacturing of Hunan Province, Hunan University, 410082, Changsha, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Chu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hunan University", 
              "id": "https://www.grid.ac/institutes/grid.67293.39", 
              "name": [
                "State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, 410082, Changsha, China", 
                "Key Laboratory for Intelligent Laser Manufacturing of Hunan Province, Hunan University, 410082, Changsha, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yuan", 
            "givenName": "Fengbo", 
            "id": "sg:person.07441015770.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07441015770.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hunan University", 
              "id": "https://www.grid.ac/institutes/grid.67293.39", 
              "name": [
                "State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, 410082, Changsha, China", 
                "Key Laboratory for Intelligent Laser Manufacturing of Hunan Province, Hunan University, 410082, Changsha, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Yi", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1117/12.661138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002412292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclepro.2015.04.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003008311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclepro.2015.04.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003008311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclepro.2015.04.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003008311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclepro.2015.04.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003008311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclepro.2015.04.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003008311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2016.09.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005834229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actamat.2016.07.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006577468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-014-5818-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007904562", 
              "https://doi.org/10.1007/s00170-014-5818-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actamat.2014.09.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008865700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclepro.2010.12.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009050649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.addma.2015.07.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011240991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40684-014-0033-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012500994", 
              "https://doi.org/10.1007/s40684-014-0033-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclepro.2016.04.150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013122072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-016-3427-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013258398", 
              "https://doi.org/10.1007/s11661-016-3427-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11663-004-0104-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014097266", 
              "https://doi.org/10.1007/s11663-004-0104-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/en9100763", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017023001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclepro.2005.11.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019075983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.addma.2014.10.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021705807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1108/13552540610637246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023604568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cirp.2012.05.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025737348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matlet.2016.05.055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026161528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-981-10-0549-7_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026362397", 
              "https://doi.org/10.1007/978-981-10-0549-7_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.addma.2015.07.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034796877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclepro.2016.03.171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039556150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclepro.2016.03.171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039556150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.optlastec.2015.08.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039718358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1108/rpj-07-2013-0067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042772696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclepro.2016.12.165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043238725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-016-8952-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045567008", 
              "https://doi.org/10.1007/s00170-016-8952-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1108/rpj-07-2013-0070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045630783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cirp.2016.04.036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047711926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-016-9135-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052029286", 
              "https://doi.org/10.1007/s00170-016-9135-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-016-9135-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052029286", 
              "https://doi.org/10.1007/s00170-016-9135-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2351/1.1471565", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070755052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4028/www.scientific.net/msf.628-629.679", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072131345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-0239-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084019229", 
              "https://doi.org/10.1007/s00170-017-0239-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-0239-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084019229", 
              "https://doi.org/10.1007/s00170-017-0239-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.optlastec.2017.03.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085193919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-1287-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092616996", 
              "https://doi.org/10.1007/s00170-017-1287-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/imece2013-65688", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092897448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mfglet.2017.11.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093027167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-018-1895-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104476055", 
              "https://doi.org/10.1007/s00170-018-1895-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-018-1895-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104476055", 
              "https://doi.org/10.1007/s00170-018-1895-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-018-2264-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104496020", 
              "https://doi.org/10.1007/s00170-018-2264-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-05", 
        "datePublishedReg": "2019-05-01", 
        "description": "Metal laser direct deposition (MLDD) is a typical process in additive manufacturing (AM), which permits the build of complex and fully dense metallic parts by using laser to melt the metal powder layer by layer. However, the process is characterized by high energy consumption and low energy efficiency. This paper established an empirical model to characterize the relationship between process parameters and energy efficiency for MLDD based on the essence of thermodynamics physical energy conversion. Additionally, a recognition method of cross-sectional profile of the deposited layer was achieved by adding tungsten carbide (WC) powder, which greatly improved the measurement reliability. Taguchi experiment and regression identification method were applied, and the relative error of the model was less than 10%. The results show that laser power has significant influence on the process energy efficiency of MLDD. The energy efficiency of single-track multi-layer stacking (SMS) process and multi-track single-layer lapping (MSL) process increased by 5.7% and 50.3%, respectively, under the optimal process parameter condition. The proposed model can be used effectively for the energy efficiency evaluation and offer the potential for improving the sustainability of MLDD.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00170-018-03220-w", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043671", 
            "issn": [
              "0268-3768", 
              "1433-3015"
            ], 
            "name": "The International Journal of Advanced Manufacturing Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "102"
          }
        ], 
        "name": "Energy efficiency evaluation of metal laser direct deposition based on process characteristics and empirical modeling", 
        "pagination": "1-13", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "955d99e0b3d4887897aff4816477da55b98e652ba9faa72e8c52fb5071424132"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00170-018-03220-w"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111160080"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00170-018-03220-w", 
          "https://app.dimensions.ai/details/publication/pub.1111160080"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130831_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00170-018-03220-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-03220-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-03220-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-03220-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-018-03220-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    209 TRIPLES      21 PREDICATES      64 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00170-018-03220-w schema:about anzsrc-for:09
    2 anzsrc-for:0910
    3 schema:author N03919a5fe8114bd68ee11cde85d1fe15
    4 schema:citation sg:pub.10.1007/978-981-10-0549-7_3
    5 sg:pub.10.1007/s00170-014-5818-3
    6 sg:pub.10.1007/s00170-016-8952-2
    7 sg:pub.10.1007/s00170-016-9135-x
    8 sg:pub.10.1007/s00170-017-0239-8
    9 sg:pub.10.1007/s00170-017-1287-9
    10 sg:pub.10.1007/s00170-018-1895-z
    11 sg:pub.10.1007/s00170-018-2264-7
    12 sg:pub.10.1007/s11661-016-3427-5
    13 sg:pub.10.1007/s11663-004-0104-7
    14 sg:pub.10.1007/s40684-014-0033-0
    15 https://doi.org/10.1016/j.actamat.2014.09.028
    16 https://doi.org/10.1016/j.actamat.2016.07.019
    17 https://doi.org/10.1016/j.addma.2014.10.003
    18 https://doi.org/10.1016/j.addma.2015.07.001
    19 https://doi.org/10.1016/j.addma.2015.07.002
    20 https://doi.org/10.1016/j.cirp.2012.05.002
    21 https://doi.org/10.1016/j.cirp.2016.04.036
    22 https://doi.org/10.1016/j.jclepro.2005.11.030
    23 https://doi.org/10.1016/j.jclepro.2010.12.010
    24 https://doi.org/10.1016/j.jclepro.2015.04.109
    25 https://doi.org/10.1016/j.jclepro.2016.03.171
    26 https://doi.org/10.1016/j.jclepro.2016.04.150
    27 https://doi.org/10.1016/j.jclepro.2016.12.165
    28 https://doi.org/10.1016/j.jmatprotec.2016.09.005
    29 https://doi.org/10.1016/j.matlet.2016.05.055
    30 https://doi.org/10.1016/j.mfglet.2017.11.001
    31 https://doi.org/10.1016/j.optlastec.2015.08.019
    32 https://doi.org/10.1016/j.optlastec.2017.03.027
    33 https://doi.org/10.1108/13552540610637246
    34 https://doi.org/10.1108/rpj-07-2013-0067
    35 https://doi.org/10.1108/rpj-07-2013-0070
    36 https://doi.org/10.1115/imece2013-65688
    37 https://doi.org/10.1117/12.661138
    38 https://doi.org/10.2351/1.1471565
    39 https://doi.org/10.3390/en9100763
    40 https://doi.org/10.4028/www.scientific.net/msf.628-629.679
    41 schema:datePublished 2019-05
    42 schema:datePublishedReg 2019-05-01
    43 schema:description Metal laser direct deposition (MLDD) is a typical process in additive manufacturing (AM), which permits the build of complex and fully dense metallic parts by using laser to melt the metal powder layer by layer. However, the process is characterized by high energy consumption and low energy efficiency. This paper established an empirical model to characterize the relationship between process parameters and energy efficiency for MLDD based on the essence of thermodynamics physical energy conversion. Additionally, a recognition method of cross-sectional profile of the deposited layer was achieved by adding tungsten carbide (WC) powder, which greatly improved the measurement reliability. Taguchi experiment and regression identification method were applied, and the relative error of the model was less than 10%. The results show that laser power has significant influence on the process energy efficiency of MLDD. The energy efficiency of single-track multi-layer stacking (SMS) process and multi-track single-layer lapping (MSL) process increased by 5.7% and 50.3%, respectively, under the optimal process parameter condition. The proposed model can be used effectively for the energy efficiency evaluation and offer the potential for improving the sustainability of MLDD.
    44 schema:genre research_article
    45 schema:inLanguage en
    46 schema:isAccessibleForFree false
    47 schema:isPartOf N65452b27ef64468898b6f6f114da81f5
    48 Nb8e8de28521041c0825065eacce6608b
    49 sg:journal.1043671
    50 schema:name Energy efficiency evaluation of metal laser direct deposition based on process characteristics and empirical modeling
    51 schema:pagination 1-13
    52 schema:productId N1199bcf500c446abb5ceb2211d6b4be5
    53 N714c8b1ba3e0412e89ade24cdec3c553
    54 Nfbb21555be5149b6acef2041f9b67c81
    55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111160080
    56 https://doi.org/10.1007/s00170-018-03220-w
    57 schema:sdDatePublished 2019-04-11T14:03
    58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    59 schema:sdPublisher N9ba697d04a0a4c53b27b1a58be5bdc65
    60 schema:url https://link.springer.com/10.1007%2Fs00170-018-03220-w
    61 sgo:license sg:explorer/license/
    62 sgo:sdDataset articles
    63 rdf:type schema:ScholarlyArticle
    64 N03919a5fe8114bd68ee11cde85d1fe15 rdf:first N51e4efa31829448da5ae8b7d38882ec5
    65 rdf:rest N40447e84faf04cc08e26f94ca91f52df
    66 N10a4b0b2a5254e59b25b71a2f5fdb834 schema:affiliation https://www.grid.ac/institutes/grid.67293.39
    67 schema:familyName Huang
    68 schema:givenName Chu
    69 rdf:type schema:Person
    70 N1199bcf500c446abb5ceb2211d6b4be5 schema:name dimensions_id
    71 schema:value pub.1111160080
    72 rdf:type schema:PropertyValue
    73 N19461a66a3b14196875951b31e511bb8 rdf:first sg:person.07441015770.23
    74 rdf:rest Na0b6829558584bb1b5fd076b1c92a3a0
    75 N40447e84faf04cc08e26f94ca91f52df rdf:first sg:person.013763473165.63
    76 rdf:rest N9533e56929a0461ab3955531d256e8e9
    77 N51e4efa31829448da5ae8b7d38882ec5 schema:affiliation https://www.grid.ac/institutes/grid.67293.39
    78 schema:familyName Liu
    79 schema:givenName Wen
    80 rdf:type schema:Person
    81 N60cf499a37774f5fb990dd66d2b5c518 schema:affiliation https://www.grid.ac/institutes/grid.67293.39
    82 schema:familyName Zhang
    83 schema:givenName Yi
    84 rdf:type schema:Person
    85 N65452b27ef64468898b6f6f114da81f5 schema:issueNumber 1-4
    86 rdf:type schema:PublicationIssue
    87 N714c8b1ba3e0412e89ade24cdec3c553 schema:name readcube_id
    88 schema:value 955d99e0b3d4887897aff4816477da55b98e652ba9faa72e8c52fb5071424132
    89 rdf:type schema:PropertyValue
    90 N9533e56929a0461ab3955531d256e8e9 rdf:first N10a4b0b2a5254e59b25b71a2f5fdb834
    91 rdf:rest N19461a66a3b14196875951b31e511bb8
    92 N9ba697d04a0a4c53b27b1a58be5bdc65 schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 Na0b6829558584bb1b5fd076b1c92a3a0 rdf:first N60cf499a37774f5fb990dd66d2b5c518
    95 rdf:rest rdf:nil
    96 Nb8e8de28521041c0825065eacce6608b schema:volumeNumber 102
    97 rdf:type schema:PublicationVolume
    98 Nfbb21555be5149b6acef2041f9b67c81 schema:name doi
    99 schema:value 10.1007/s00170-018-03220-w
    100 rdf:type schema:PropertyValue
    101 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Engineering
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Manufacturing Engineering
    106 rdf:type schema:DefinedTerm
    107 sg:journal.1043671 schema:issn 0268-3768
    108 1433-3015
    109 schema:name The International Journal of Advanced Manufacturing Technology
    110 rdf:type schema:Periodical
    111 sg:person.013763473165.63 schema:affiliation https://www.grid.ac/institutes/grid.67293.39
    112 schema:familyName Wei
    113 schema:givenName Haiying
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013763473165.63
    115 rdf:type schema:Person
    116 sg:person.07441015770.23 schema:affiliation https://www.grid.ac/institutes/grid.67293.39
    117 schema:familyName Yuan
    118 schema:givenName Fengbo
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07441015770.23
    120 rdf:type schema:Person
    121 sg:pub.10.1007/978-981-10-0549-7_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026362397
    122 https://doi.org/10.1007/978-981-10-0549-7_3
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s00170-014-5818-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007904562
    125 https://doi.org/10.1007/s00170-014-5818-3
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s00170-016-8952-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045567008
    128 https://doi.org/10.1007/s00170-016-8952-2
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s00170-016-9135-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052029286
    131 https://doi.org/10.1007/s00170-016-9135-x
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s00170-017-0239-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084019229
    134 https://doi.org/10.1007/s00170-017-0239-8
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/s00170-017-1287-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092616996
    137 https://doi.org/10.1007/s00170-017-1287-9
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s00170-018-1895-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1104476055
    140 https://doi.org/10.1007/s00170-018-1895-z
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/s00170-018-2264-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104496020
    143 https://doi.org/10.1007/s00170-018-2264-7
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/s11661-016-3427-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013258398
    146 https://doi.org/10.1007/s11661-016-3427-5
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s11663-004-0104-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014097266
    149 https://doi.org/10.1007/s11663-004-0104-7
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s40684-014-0033-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012500994
    152 https://doi.org/10.1007/s40684-014-0033-0
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.actamat.2014.09.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008865700
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.actamat.2016.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006577468
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.addma.2014.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021705807
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.addma.2015.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034796877
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.addma.2015.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011240991
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.cirp.2012.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025737348
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.cirp.2016.04.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047711926
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.jclepro.2005.11.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019075983
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.jclepro.2010.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009050649
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/j.jclepro.2015.04.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003008311
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/j.jclepro.2016.03.171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039556150
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/j.jclepro.2016.04.150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013122072
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/j.jclepro.2016.12.165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043238725
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/j.jmatprotec.2016.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005834229
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/j.matlet.2016.05.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026161528
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/j.mfglet.2017.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093027167
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/j.optlastec.2015.08.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039718358
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/j.optlastec.2017.03.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085193919
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1108/13552540610637246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023604568
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1108/rpj-07-2013-0067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042772696
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1108/rpj-07-2013-0070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045630783
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1115/imece2013-65688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092897448
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1117/12.661138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002412292
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.2351/1.1471565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070755052
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.3390/en9100763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017023001
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.4028/www.scientific.net/msf.628-629.679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072131345
    205 rdf:type schema:CreativeWork
    206 https://www.grid.ac/institutes/grid.67293.39 schema:alternateName Hunan University
    207 schema:name Key Laboratory for Intelligent Laser Manufacturing of Hunan Province, Hunan University, 410082, Changsha, China
    208 State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, 410082, Changsha, China
    209 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...