A novel Lap-MRF method for large aperture mirrors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-04

AUTHORS

Feng Guan, Hao Hu, Shengyi Li, Zhongyan Liu, Xiaoqiang Peng, Feng Shi

ABSTRACT

A novel magnetorheological finishing (MRF) method, which is named Lap-MRF, is proposed in this paper. The magnetorheological fluid (MR fluid) in the polishing zones can be renewed continuously so that the determinacy is ensured. A lap, instead of a large polishing wheel, is used to expand the polishing area, which improves the material removal rate largely. Lap-MRF uses flexible MR fluid as polishing pad to match the surface well. Moreover, the polishing pad executes planetary motion so as to obtain smooth surface. In this paper, the principle of Lap-MRF and the theoretical model of material removal rate are presented. Using the finite element analysis method, the permanent magnet unit is simulated and a multi-parameter optimization is conducted to improve the performance of Lap-MRF. Finally, a series of polishing experiments and simulation process are carried out. For K9 sample, the volume removal rate is up to 0.76 mm3/min and its relative change rate is less than 5.5%. For silicon modification layer sample, the surface roughness is improved to 0.788 nm RMS (root mean square) from 1.610 nm RMS. There is no deep pit and the polishing ripple is not apparent on the surface. For Φ1000 mm flat mirror, the convergence efficiency of simulation process is up to 97.2%. These results verify the validity of the proposed method, which makes Lap-MRF to be a promising finishing technology for large aperture mirrors. More... »

PAGES

4645-4657

References to SciGraph publications

  • 2013-02. Compression behaviors of magnetorheological fluids under nonuniform magnetic field in RHEOLOGICA ACTA
  • 2016-03. Modeling of edge tool influence functions for computer controlled optical surfacing process in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2015-12. Material removal mechanism of cluster magnetorheological effect in plane polishing in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2008-08. Analysis of magnetorheological abrasive flow finishing (MRAFF) process in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2015-05. Multi-objective optimization design method for the machine tool’s structural parts based on computer-aided engineering in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2004-04. Survey of multi-objective optimization methods for engineering in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 2009-03. Multi-objective performance optimal design of large-scale injection molding machine in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2007-12. Multi-objective optimization for turning processes using neural network modeling and dynamic-neighborhood particle swarm optimization in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2007-07. Effect of extrusion pressure and number of finishing cycles on surface roughness in magnetorheological abrasive flow finishing (MRAFF) process in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00170-017-1498-0

    DOI

    http://dx.doi.org/10.1007/s00170-017-1498-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1100405748


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National University of Defense Technology", 
              "id": "https://www.grid.ac/institutes/grid.412110.7", 
              "name": [
                "College of Mechatronic Engineering and Automation, National University of Defense Technology, 410073, Changsha, China", 
                "Hu\u2019nan Key Laboratory of Ultra-precision Machining Technology, 410073, Changsha, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guan", 
            "givenName": "Feng", 
            "id": "sg:person.011220232354.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011220232354.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Defense Technology", 
              "id": "https://www.grid.ac/institutes/grid.412110.7", 
              "name": [
                "College of Mechatronic Engineering and Automation, National University of Defense Technology, 410073, Changsha, China", 
                "Hu\u2019nan Key Laboratory of Ultra-precision Machining Technology, 410073, Changsha, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Hao", 
            "id": "sg:person.013166436131.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166436131.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Defense Technology", 
              "id": "https://www.grid.ac/institutes/grid.412110.7", 
              "name": [
                "College of Mechatronic Engineering and Automation, National University of Defense Technology, 410073, Changsha, China", 
                "Hu\u2019nan Key Laboratory of Ultra-precision Machining Technology, 410073, Changsha, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Shengyi", 
            "id": "sg:person.011331635245.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331635245.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Defense Technology", 
              "id": "https://www.grid.ac/institutes/grid.412110.7", 
              "name": [
                "College of Mechatronic Engineering and Automation, National University of Defense Technology, 410073, Changsha, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Zhongyan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Defense Technology", 
              "id": "https://www.grid.ac/institutes/grid.412110.7", 
              "name": [
                "College of Mechatronic Engineering and Automation, National University of Defense Technology, 410073, Changsha, China", 
                "Hu\u2019nan Key Laboratory of Ultra-precision Machining Technology, 410073, Changsha, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Peng", 
            "givenName": "Xiaoqiang", 
            "id": "sg:person.014741560757.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014741560757.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Defense Technology", 
              "id": "https://www.grid.ac/institutes/grid.412110.7", 
              "name": [
                "College of Mechatronic Engineering and Automation, National University of Defense Technology, 410073, Changsha, China", 
                "Hu\u2019nan Key Laboratory of Ultra-precision Machining Technology, 410073, Changsha, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Feng", 
            "id": "sg:person.015561655553.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015561655553.34"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1117/1.3597328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001121811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-006-0719-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002155822", 
              "https://doi.org/10.1007/s00170-006-0719-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-006-0719-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002155822", 
              "https://doi.org/10.1007/s00170-006-0719-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2014.06.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002215911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-015-7633-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008295853", 
              "https://doi.org/10.1007/s00170-015-7633-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.789805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008438105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-003-0368-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011264351", 
              "https://doi.org/10.1007/s00158-003-0368-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-003-0368-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011264351", 
              "https://doi.org/10.1007/s00158-003-0368-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.402796", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011792666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00397-013-0678-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012905435", 
              "https://doi.org/10.1007/s00397-013-0678-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.51181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019600853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-008-1467-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019701964", 
              "https://doi.org/10.1007/s00170-008-1467-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-008-1467-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019701964", 
              "https://doi.org/10.1007/s00170-008-1467-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-007-1095-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021161614", 
              "https://doi.org/10.1007/s00170-007-1095-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-007-1095-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021161614", 
              "https://doi.org/10.1007/s00170-007-1095-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2014.04.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021327692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.22.019262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033152716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.627677", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043145077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.wear.2012.11.082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045589008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-006-0502-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046172611", 
              "https://doi.org/10.1007/s00170-006-0502-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-006-0502-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046172611", 
              "https://doi.org/10.1007/s00170-006-0502-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-014-6700-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051013887", 
              "https://doi.org/10.1007/s00170-014-6700-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-015-7332-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053191084", 
              "https://doi.org/10.1007/s00170-015-7332-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1106/011m-cj25-64qc-f3a6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060842386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1106/011m-cj25-64qc-f3a6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060842386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.18.002242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065192551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/opn.12.10.000020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065245573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3788/hplpb20112301.0097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071402477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3901/jme.2014.01.205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071554289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00224065.1980.11980968", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101183642"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-04", 
        "datePublishedReg": "2018-04-01", 
        "description": "A novel magnetorheological finishing (MRF) method, which is named Lap-MRF, is proposed in this paper. The magnetorheological fluid (MR fluid) in the polishing zones can be renewed continuously so that the determinacy is ensured. A lap, instead of a large polishing wheel, is used to expand the polishing area, which improves the material removal rate largely. Lap-MRF uses flexible MR fluid as polishing pad to match the surface well. Moreover, the polishing pad executes planetary motion so as to obtain smooth surface. In this paper, the principle of Lap-MRF and the theoretical model of material removal rate are presented. Using the finite element analysis method, the permanent magnet unit is simulated and a multi-parameter optimization is conducted to improve the performance of Lap-MRF. Finally, a series of polishing experiments and simulation process are carried out. For K9 sample, the volume removal rate is up to 0.76 mm3/min and its relative change rate is less than 5.5%. For silicon modification layer sample, the surface roughness is improved to 0.788 nm RMS (root mean square) from 1.610 nm RMS. There is no deep pit and the polishing ripple is not apparent on the surface. For \u03a61000 mm flat mirror, the convergence efficiency of simulation process is up to 97.2%. These results verify the validity of the proposed method, which makes Lap-MRF to be a promising finishing technology for large aperture mirrors.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00170-017-1498-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043671", 
            "issn": [
              "0268-3768", 
              "1433-3015"
            ], 
            "name": "The International Journal of Advanced Manufacturing Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9-12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "95"
          }
        ], 
        "name": "A novel Lap-MRF method for large aperture mirrors", 
        "pagination": "4645-4657", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "64dca1c6c38dda01bf46378688d50014be8efe99c1c039474adb9f02c3a64387"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00170-017-1498-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1100405748"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00170-017-1498-0", 
          "https://app.dimensions.ai/details/publication/pub.1100405748"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T13:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000603.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00170-017-1498-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-017-1498-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-017-1498-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-017-1498-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-017-1498-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    177 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00170-017-1498-0 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nbd3cbb26cfa24c0986219b1acebf5ed7
    4 schema:citation sg:pub.10.1007/s00158-003-0368-6
    5 sg:pub.10.1007/s00170-006-0502-x
    6 sg:pub.10.1007/s00170-006-0719-8
    7 sg:pub.10.1007/s00170-007-1095-8
    8 sg:pub.10.1007/s00170-008-1467-8
    9 sg:pub.10.1007/s00170-014-6700-z
    10 sg:pub.10.1007/s00170-015-7332-7
    11 sg:pub.10.1007/s00170-015-7633-x
    12 sg:pub.10.1007/s00397-013-0678-6
    13 https://doi.org/10.1016/j.ijmachtools.2014.04.008
    14 https://doi.org/10.1016/j.jmatprotec.2014.06.014
    15 https://doi.org/10.1016/j.wear.2012.11.082
    16 https://doi.org/10.1080/00224065.1980.11980968
    17 https://doi.org/10.1106/011m-cj25-64qc-f3a6
    18 https://doi.org/10.1117/1.3597328
    19 https://doi.org/10.1117/12.402796
    20 https://doi.org/10.1117/12.51181
    21 https://doi.org/10.1117/12.627677
    22 https://doi.org/10.1117/12.789805
    23 https://doi.org/10.1364/oe.18.002242
    24 https://doi.org/10.1364/oe.22.019262
    25 https://doi.org/10.1364/opn.12.10.000020
    26 https://doi.org/10.3788/hplpb20112301.0097
    27 https://doi.org/10.3901/jme.2014.01.205
    28 schema:datePublished 2018-04
    29 schema:datePublishedReg 2018-04-01
    30 schema:description A novel magnetorheological finishing (MRF) method, which is named Lap-MRF, is proposed in this paper. The magnetorheological fluid (MR fluid) in the polishing zones can be renewed continuously so that the determinacy is ensured. A lap, instead of a large polishing wheel, is used to expand the polishing area, which improves the material removal rate largely. Lap-MRF uses flexible MR fluid as polishing pad to match the surface well. Moreover, the polishing pad executes planetary motion so as to obtain smooth surface. In this paper, the principle of Lap-MRF and the theoretical model of material removal rate are presented. Using the finite element analysis method, the permanent magnet unit is simulated and a multi-parameter optimization is conducted to improve the performance of Lap-MRF. Finally, a series of polishing experiments and simulation process are carried out. For K9 sample, the volume removal rate is up to 0.76 mm3/min and its relative change rate is less than 5.5%. For silicon modification layer sample, the surface roughness is improved to 0.788 nm RMS (root mean square) from 1.610 nm RMS. There is no deep pit and the polishing ripple is not apparent on the surface. For Φ1000 mm flat mirror, the convergence efficiency of simulation process is up to 97.2%. These results verify the validity of the proposed method, which makes Lap-MRF to be a promising finishing technology for large aperture mirrors.
    31 schema:genre research_article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree false
    34 schema:isPartOf N65dfed1100e54d6a9a9b5b7b692e435f
    35 N7de43870a502479987f645bb42c6e769
    36 sg:journal.1043671
    37 schema:name A novel Lap-MRF method for large aperture mirrors
    38 schema:pagination 4645-4657
    39 schema:productId N5cf4c4c39ae14d38a06d0e1b8dc6fe8d
    40 N8384b31a845b4b8cba8adea036ace140
    41 Nc0d3b04382774163aee9f118a3523e79
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100405748
    43 https://doi.org/10.1007/s00170-017-1498-0
    44 schema:sdDatePublished 2019-04-10T13:32
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher Nf2626a270f4a453087abb1ceba672440
    47 schema:url http://link.springer.com/10.1007/s00170-017-1498-0
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N2b58be0bb3a54b6e9de24183d158e831 rdf:first sg:person.013166436131.95
    52 rdf:rest Nf0e0bacb6b0340649be8630731071afa
    53 N45d6a918bdbc4d9ab53bc713892e47e5 rdf:first sg:person.015561655553.34
    54 rdf:rest rdf:nil
    55 N5cf4c4c39ae14d38a06d0e1b8dc6fe8d schema:name doi
    56 schema:value 10.1007/s00170-017-1498-0
    57 rdf:type schema:PropertyValue
    58 N65dfed1100e54d6a9a9b5b7b692e435f schema:volumeNumber 95
    59 rdf:type schema:PublicationVolume
    60 N707a06ae586b44d4ab469c24b6934e89 rdf:first N8e7560b3f9064241934d9c42c83675bd
    61 rdf:rest Ncbc21271f7b640f1b1eb7d5042687020
    62 N7de43870a502479987f645bb42c6e769 schema:issueNumber 9-12
    63 rdf:type schema:PublicationIssue
    64 N8384b31a845b4b8cba8adea036ace140 schema:name dimensions_id
    65 schema:value pub.1100405748
    66 rdf:type schema:PropertyValue
    67 N8e7560b3f9064241934d9c42c83675bd schema:affiliation https://www.grid.ac/institutes/grid.412110.7
    68 schema:familyName Liu
    69 schema:givenName Zhongyan
    70 rdf:type schema:Person
    71 Nbd3cbb26cfa24c0986219b1acebf5ed7 rdf:first sg:person.011220232354.13
    72 rdf:rest N2b58be0bb3a54b6e9de24183d158e831
    73 Nc0d3b04382774163aee9f118a3523e79 schema:name readcube_id
    74 schema:value 64dca1c6c38dda01bf46378688d50014be8efe99c1c039474adb9f02c3a64387
    75 rdf:type schema:PropertyValue
    76 Ncbc21271f7b640f1b1eb7d5042687020 rdf:first sg:person.014741560757.55
    77 rdf:rest N45d6a918bdbc4d9ab53bc713892e47e5
    78 Nf0e0bacb6b0340649be8630731071afa rdf:first sg:person.011331635245.01
    79 rdf:rest N707a06ae586b44d4ab469c24b6934e89
    80 Nf2626a270f4a453087abb1ceba672440 schema:name Springer Nature - SN SciGraph project
    81 rdf:type schema:Organization
    82 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Engineering
    84 rdf:type schema:DefinedTerm
    85 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Materials Engineering
    87 rdf:type schema:DefinedTerm
    88 sg:journal.1043671 schema:issn 0268-3768
    89 1433-3015
    90 schema:name The International Journal of Advanced Manufacturing Technology
    91 rdf:type schema:Periodical
    92 sg:person.011220232354.13 schema:affiliation https://www.grid.ac/institutes/grid.412110.7
    93 schema:familyName Guan
    94 schema:givenName Feng
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011220232354.13
    96 rdf:type schema:Person
    97 sg:person.011331635245.01 schema:affiliation https://www.grid.ac/institutes/grid.412110.7
    98 schema:familyName Li
    99 schema:givenName Shengyi
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331635245.01
    101 rdf:type schema:Person
    102 sg:person.013166436131.95 schema:affiliation https://www.grid.ac/institutes/grid.412110.7
    103 schema:familyName Hu
    104 schema:givenName Hao
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166436131.95
    106 rdf:type schema:Person
    107 sg:person.014741560757.55 schema:affiliation https://www.grid.ac/institutes/grid.412110.7
    108 schema:familyName Peng
    109 schema:givenName Xiaoqiang
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014741560757.55
    111 rdf:type schema:Person
    112 sg:person.015561655553.34 schema:affiliation https://www.grid.ac/institutes/grid.412110.7
    113 schema:familyName Shi
    114 schema:givenName Feng
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015561655553.34
    116 rdf:type schema:Person
    117 sg:pub.10.1007/s00158-003-0368-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011264351
    118 https://doi.org/10.1007/s00158-003-0368-6
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s00170-006-0502-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046172611
    121 https://doi.org/10.1007/s00170-006-0502-x
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/s00170-006-0719-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002155822
    124 https://doi.org/10.1007/s00170-006-0719-8
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/s00170-007-1095-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021161614
    127 https://doi.org/10.1007/s00170-007-1095-8
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/s00170-008-1467-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019701964
    130 https://doi.org/10.1007/s00170-008-1467-8
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/s00170-014-6700-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1051013887
    133 https://doi.org/10.1007/s00170-014-6700-z
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/s00170-015-7332-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053191084
    136 https://doi.org/10.1007/s00170-015-7332-7
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/s00170-015-7633-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008295853
    139 https://doi.org/10.1007/s00170-015-7633-x
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/s00397-013-0678-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012905435
    142 https://doi.org/10.1007/s00397-013-0678-6
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.ijmachtools.2014.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021327692
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.jmatprotec.2014.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002215911
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.wear.2012.11.082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045589008
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1080/00224065.1980.11980968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101183642
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1106/011m-cj25-64qc-f3a6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060842386
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1117/1.3597328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001121811
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1117/12.402796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011792666
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1117/12.51181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019600853
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1117/12.627677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043145077
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1117/12.789805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008438105
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1364/oe.18.002242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065192551
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1364/oe.22.019262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033152716
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1364/opn.12.10.000020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065245573
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.3788/hplpb20112301.0097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071402477
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.3901/jme.2014.01.205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071554289
    173 rdf:type schema:CreativeWork
    174 https://www.grid.ac/institutes/grid.412110.7 schema:alternateName National University of Defense Technology
    175 schema:name College of Mechatronic Engineering and Automation, National University of Defense Technology, 410073, Changsha, China
    176 Hu’nan Key Laboratory of Ultra-precision Machining Technology, 410073, Changsha, China
    177 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...