A novel Lap-MRF method for large aperture mirrors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-04

AUTHORS

Feng Guan, Hao Hu, Shengyi Li, Zhongyan Liu, Xiaoqiang Peng, Feng Shi

ABSTRACT

A novel magnetorheological finishing (MRF) method, which is named Lap-MRF, is proposed in this paper. The magnetorheological fluid (MR fluid) in the polishing zones can be renewed continuously so that the determinacy is ensured. A lap, instead of a large polishing wheel, is used to expand the polishing area, which improves the material removal rate largely. Lap-MRF uses flexible MR fluid as polishing pad to match the surface well. Moreover, the polishing pad executes planetary motion so as to obtain smooth surface. In this paper, the principle of Lap-MRF and the theoretical model of material removal rate are presented. Using the finite element analysis method, the permanent magnet unit is simulated and a multi-parameter optimization is conducted to improve the performance of Lap-MRF. Finally, a series of polishing experiments and simulation process are carried out. For K9 sample, the volume removal rate is up to 0.76 mm3/min and its relative change rate is less than 5.5%. For silicon modification layer sample, the surface roughness is improved to 0.788 nm RMS (root mean square) from 1.610 nm RMS. There is no deep pit and the polishing ripple is not apparent on the surface. For Φ1000 mm flat mirror, the convergence efficiency of simulation process is up to 97.2%. These results verify the validity of the proposed method, which makes Lap-MRF to be a promising finishing technology for large aperture mirrors. More... »

PAGES

4645-4657

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00170-017-1498-0

DOI

http://dx.doi.org/10.1007/s00170-017-1498-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100405748


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology", 
          "id": "https://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "College of Mechatronic Engineering and Automation, National University of Defense Technology, 410073, Changsha, China", 
            "Hu\u2019nan Key Laboratory of Ultra-precision Machining Technology, 410073, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guan", 
        "givenName": "Feng", 
        "id": "sg:person.011220232354.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011220232354.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology", 
          "id": "https://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "College of Mechatronic Engineering and Automation, National University of Defense Technology, 410073, Changsha, China", 
            "Hu\u2019nan Key Laboratory of Ultra-precision Machining Technology, 410073, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Hao", 
        "id": "sg:person.013166436131.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166436131.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology", 
          "id": "https://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "College of Mechatronic Engineering and Automation, National University of Defense Technology, 410073, Changsha, China", 
            "Hu\u2019nan Key Laboratory of Ultra-precision Machining Technology, 410073, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Shengyi", 
        "id": "sg:person.011331635245.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331635245.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology", 
          "id": "https://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "College of Mechatronic Engineering and Automation, National University of Defense Technology, 410073, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Zhongyan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology", 
          "id": "https://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "College of Mechatronic Engineering and Automation, National University of Defense Technology, 410073, Changsha, China", 
            "Hu\u2019nan Key Laboratory of Ultra-precision Machining Technology, 410073, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Xiaoqiang", 
        "id": "sg:person.014741560757.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014741560757.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology", 
          "id": "https://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "College of Mechatronic Engineering and Automation, National University of Defense Technology, 410073, Changsha, China", 
            "Hu\u2019nan Key Laboratory of Ultra-precision Machining Technology, 410073, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Feng", 
        "id": "sg:person.015561655553.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015561655553.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1117/1.3597328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001121811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-006-0719-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002155822", 
          "https://doi.org/10.1007/s00170-006-0719-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-006-0719-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002155822", 
          "https://doi.org/10.1007/s00170-006-0719-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2014.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002215911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-015-7633-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008295853", 
          "https://doi.org/10.1007/s00170-015-7633-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.789805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008438105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-003-0368-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011264351", 
          "https://doi.org/10.1007/s00158-003-0368-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00158-003-0368-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011264351", 
          "https://doi.org/10.1007/s00158-003-0368-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.402796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011792666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-013-0678-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012905435", 
          "https://doi.org/10.1007/s00397-013-0678-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.51181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019600853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-008-1467-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019701964", 
          "https://doi.org/10.1007/s00170-008-1467-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-008-1467-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019701964", 
          "https://doi.org/10.1007/s00170-008-1467-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-007-1095-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021161614", 
          "https://doi.org/10.1007/s00170-007-1095-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-007-1095-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021161614", 
          "https://doi.org/10.1007/s00170-007-1095-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2014.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021327692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.22.019262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033152716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.627677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043145077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wear.2012.11.082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045589008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-006-0502-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046172611", 
          "https://doi.org/10.1007/s00170-006-0502-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-006-0502-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046172611", 
          "https://doi.org/10.1007/s00170-006-0502-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-014-6700-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051013887", 
          "https://doi.org/10.1007/s00170-014-6700-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-015-7332-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053191084", 
          "https://doi.org/10.1007/s00170-015-7332-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1106/011m-cj25-64qc-f3a6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060842386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1106/011m-cj25-64qc-f3a6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060842386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.002242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065192551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/opn.12.10.000020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065245573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3788/hplpb20112301.0097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071402477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3901/jme.2014.01.205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071554289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00224065.1980.11980968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101183642"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04", 
    "datePublishedReg": "2018-04-01", 
    "description": "A novel magnetorheological finishing (MRF) method, which is named Lap-MRF, is proposed in this paper. The magnetorheological fluid (MR fluid) in the polishing zones can be renewed continuously so that the determinacy is ensured. A lap, instead of a large polishing wheel, is used to expand the polishing area, which improves the material removal rate largely. Lap-MRF uses flexible MR fluid as polishing pad to match the surface well. Moreover, the polishing pad executes planetary motion so as to obtain smooth surface. In this paper, the principle of Lap-MRF and the theoretical model of material removal rate are presented. Using the finite element analysis method, the permanent magnet unit is simulated and a multi-parameter optimization is conducted to improve the performance of Lap-MRF. Finally, a series of polishing experiments and simulation process are carried out. For K9 sample, the volume removal rate is up to 0.76 mm3/min and its relative change rate is less than 5.5%. For silicon modification layer sample, the surface roughness is improved to 0.788 nm RMS (root mean square) from 1.610 nm RMS. There is no deep pit and the polishing ripple is not apparent on the surface. For \u03a61000 mm flat mirror, the convergence efficiency of simulation process is up to 97.2%. These results verify the validity of the proposed method, which makes Lap-MRF to be a promising finishing technology for large aperture mirrors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00170-017-1498-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043671", 
        "issn": [
          "0268-3768", 
          "1433-3015"
        ], 
        "name": "The International Journal of Advanced Manufacturing Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9-12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "95"
      }
    ], 
    "name": "A novel Lap-MRF method for large aperture mirrors", 
    "pagination": "4645-4657", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "64dca1c6c38dda01bf46378688d50014be8efe99c1c039474adb9f02c3a64387"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00170-017-1498-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100405748"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00170-017-1498-0", 
      "https://app.dimensions.ai/details/publication/pub.1100405748"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000603.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00170-017-1498-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-017-1498-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-017-1498-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-017-1498-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-017-1498-0'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00170-017-1498-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N5e3e3d1a01844e53b4f878eef9a401ec
4 schema:citation sg:pub.10.1007/s00158-003-0368-6
5 sg:pub.10.1007/s00170-006-0502-x
6 sg:pub.10.1007/s00170-006-0719-8
7 sg:pub.10.1007/s00170-007-1095-8
8 sg:pub.10.1007/s00170-008-1467-8
9 sg:pub.10.1007/s00170-014-6700-z
10 sg:pub.10.1007/s00170-015-7332-7
11 sg:pub.10.1007/s00170-015-7633-x
12 sg:pub.10.1007/s00397-013-0678-6
13 https://doi.org/10.1016/j.ijmachtools.2014.04.008
14 https://doi.org/10.1016/j.jmatprotec.2014.06.014
15 https://doi.org/10.1016/j.wear.2012.11.082
16 https://doi.org/10.1080/00224065.1980.11980968
17 https://doi.org/10.1106/011m-cj25-64qc-f3a6
18 https://doi.org/10.1117/1.3597328
19 https://doi.org/10.1117/12.402796
20 https://doi.org/10.1117/12.51181
21 https://doi.org/10.1117/12.627677
22 https://doi.org/10.1117/12.789805
23 https://doi.org/10.1364/oe.18.002242
24 https://doi.org/10.1364/oe.22.019262
25 https://doi.org/10.1364/opn.12.10.000020
26 https://doi.org/10.3788/hplpb20112301.0097
27 https://doi.org/10.3901/jme.2014.01.205
28 schema:datePublished 2018-04
29 schema:datePublishedReg 2018-04-01
30 schema:description A novel magnetorheological finishing (MRF) method, which is named Lap-MRF, is proposed in this paper. The magnetorheological fluid (MR fluid) in the polishing zones can be renewed continuously so that the determinacy is ensured. A lap, instead of a large polishing wheel, is used to expand the polishing area, which improves the material removal rate largely. Lap-MRF uses flexible MR fluid as polishing pad to match the surface well. Moreover, the polishing pad executes planetary motion so as to obtain smooth surface. In this paper, the principle of Lap-MRF and the theoretical model of material removal rate are presented. Using the finite element analysis method, the permanent magnet unit is simulated and a multi-parameter optimization is conducted to improve the performance of Lap-MRF. Finally, a series of polishing experiments and simulation process are carried out. For K9 sample, the volume removal rate is up to 0.76 mm3/min and its relative change rate is less than 5.5%. For silicon modification layer sample, the surface roughness is improved to 0.788 nm RMS (root mean square) from 1.610 nm RMS. There is no deep pit and the polishing ripple is not apparent on the surface. For Φ1000 mm flat mirror, the convergence efficiency of simulation process is up to 97.2%. These results verify the validity of the proposed method, which makes Lap-MRF to be a promising finishing technology for large aperture mirrors.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N1e241fb2c2504d2083402d8e06a5b597
35 N3ffdf2fc2cc44094b5628fa2698156e8
36 sg:journal.1043671
37 schema:name A novel Lap-MRF method for large aperture mirrors
38 schema:pagination 4645-4657
39 schema:productId N0f1ba33cf3154bc2bbd5a56dafec87e5
40 N1080965b02a24b73a2cc9461119c9953
41 N8d9f395ad5944b52ad0b1ab84673a2cc
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100405748
43 https://doi.org/10.1007/s00170-017-1498-0
44 schema:sdDatePublished 2019-04-10T13:32
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N54378a14d3134075a4b6f2c2a0840e57
47 schema:url http://link.springer.com/10.1007/s00170-017-1498-0
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N0f1ba33cf3154bc2bbd5a56dafec87e5 schema:name doi
52 schema:value 10.1007/s00170-017-1498-0
53 rdf:type schema:PropertyValue
54 N1080965b02a24b73a2cc9461119c9953 schema:name dimensions_id
55 schema:value pub.1100405748
56 rdf:type schema:PropertyValue
57 N1e241fb2c2504d2083402d8e06a5b597 schema:volumeNumber 95
58 rdf:type schema:PublicationVolume
59 N3ffdf2fc2cc44094b5628fa2698156e8 schema:issueNumber 9-12
60 rdf:type schema:PublicationIssue
61 N42459def3cfd4122b50c004f55c69f47 rdf:first sg:person.013166436131.95
62 rdf:rest Na5d6ae10084e4fffb47cffeed73ff8fa
63 N4b957880057e48a0a225d1bb1a568df5 rdf:first N715c230e82fe4658a5209e7191c8535b
64 rdf:rest Nc6e50c418b374d4fb641cc4f284002bb
65 N54378a14d3134075a4b6f2c2a0840e57 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N5e3e3d1a01844e53b4f878eef9a401ec rdf:first sg:person.011220232354.13
68 rdf:rest N42459def3cfd4122b50c004f55c69f47
69 N715c230e82fe4658a5209e7191c8535b schema:affiliation https://www.grid.ac/institutes/grid.412110.7
70 schema:familyName Liu
71 schema:givenName Zhongyan
72 rdf:type schema:Person
73 N8d9f395ad5944b52ad0b1ab84673a2cc schema:name readcube_id
74 schema:value 64dca1c6c38dda01bf46378688d50014be8efe99c1c039474adb9f02c3a64387
75 rdf:type schema:PropertyValue
76 Na358d3bb28cd4027b838ccdda014a154 rdf:first sg:person.015561655553.34
77 rdf:rest rdf:nil
78 Na5d6ae10084e4fffb47cffeed73ff8fa rdf:first sg:person.011331635245.01
79 rdf:rest N4b957880057e48a0a225d1bb1a568df5
80 Nc6e50c418b374d4fb641cc4f284002bb rdf:first sg:person.014741560757.55
81 rdf:rest Na358d3bb28cd4027b838ccdda014a154
82 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
83 schema:name Engineering
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
86 schema:name Materials Engineering
87 rdf:type schema:DefinedTerm
88 sg:journal.1043671 schema:issn 0268-3768
89 1433-3015
90 schema:name The International Journal of Advanced Manufacturing Technology
91 rdf:type schema:Periodical
92 sg:person.011220232354.13 schema:affiliation https://www.grid.ac/institutes/grid.412110.7
93 schema:familyName Guan
94 schema:givenName Feng
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011220232354.13
96 rdf:type schema:Person
97 sg:person.011331635245.01 schema:affiliation https://www.grid.ac/institutes/grid.412110.7
98 schema:familyName Li
99 schema:givenName Shengyi
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331635245.01
101 rdf:type schema:Person
102 sg:person.013166436131.95 schema:affiliation https://www.grid.ac/institutes/grid.412110.7
103 schema:familyName Hu
104 schema:givenName Hao
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166436131.95
106 rdf:type schema:Person
107 sg:person.014741560757.55 schema:affiliation https://www.grid.ac/institutes/grid.412110.7
108 schema:familyName Peng
109 schema:givenName Xiaoqiang
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014741560757.55
111 rdf:type schema:Person
112 sg:person.015561655553.34 schema:affiliation https://www.grid.ac/institutes/grid.412110.7
113 schema:familyName Shi
114 schema:givenName Feng
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015561655553.34
116 rdf:type schema:Person
117 sg:pub.10.1007/s00158-003-0368-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011264351
118 https://doi.org/10.1007/s00158-003-0368-6
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00170-006-0502-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046172611
121 https://doi.org/10.1007/s00170-006-0502-x
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s00170-006-0719-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002155822
124 https://doi.org/10.1007/s00170-006-0719-8
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s00170-007-1095-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021161614
127 https://doi.org/10.1007/s00170-007-1095-8
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00170-008-1467-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019701964
130 https://doi.org/10.1007/s00170-008-1467-8
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s00170-014-6700-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1051013887
133 https://doi.org/10.1007/s00170-014-6700-z
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s00170-015-7332-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053191084
136 https://doi.org/10.1007/s00170-015-7332-7
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s00170-015-7633-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008295853
139 https://doi.org/10.1007/s00170-015-7633-x
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s00397-013-0678-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012905435
142 https://doi.org/10.1007/s00397-013-0678-6
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ijmachtools.2014.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021327692
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.jmatprotec.2014.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002215911
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.wear.2012.11.082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045589008
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1080/00224065.1980.11980968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101183642
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1106/011m-cj25-64qc-f3a6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060842386
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1117/1.3597328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001121811
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1117/12.402796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011792666
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1117/12.51181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019600853
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1117/12.627677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043145077
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1117/12.789805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008438105
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1364/oe.18.002242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065192551
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1364/oe.22.019262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033152716
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1364/opn.12.10.000020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065245573
169 rdf:type schema:CreativeWork
170 https://doi.org/10.3788/hplpb20112301.0097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071402477
171 rdf:type schema:CreativeWork
172 https://doi.org/10.3901/jme.2014.01.205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071554289
173 rdf:type schema:CreativeWork
174 https://www.grid.ac/institutes/grid.412110.7 schema:alternateName National University of Defense Technology
175 schema:name College of Mechatronic Engineering and Automation, National University of Defense Technology, 410073, Changsha, China
176 Hu’nan Key Laboratory of Ultra-precision Machining Technology, 410073, Changsha, China
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...