A gas-liquid-solid three-phase abrasive flow processing method based on bubble collapsing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-03

AUTHORS

Jiang-qin Ge, Shi-ming Ji, Da-peng Tan

ABSTRACT

Soft abrasive flow (SAF) processing presents advantages in avoiding surface damages and adapting complex workpiece shapes. However, the current SAF method exhibits low processing efficiency for materials. To solve this problem, a gas-liquid-solid three-phase abrasive flow processing method (GLSP) based on bubble collapsing is proposed. Through a surface constrained module, a multi-inlet constrained flow passage for silicon wafer processing is constructed, in which the bubbles are injected into the abrasive flow to strengthen the processing efficiency. On the basis of the Euler multi-phase model and population balance model (PBM), a GLSP fluid mechanic model is set up. Simulation results show that the bubble collapse region can be controlled by designing the flow passage structure and that the near-wall particle turbulent motion can be strengthened by decreasing the fluid viscosity. The observation and processing experiments show that the most violent bubble collapsing occurs in the initial constrained surface region. Bubble collapsing can result in an average particle velocity increase from 12.90 to 15.97 m/s. The proposed GLSP method can increase the processing efficiency by 50% compared with the SAF method, and the average surface roughness can reach 2.84 nm. More... »

PAGES

1069-1085

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00170-017-1250-9

DOI

http://dx.doi.org/10.1007/s00170-017-1250-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092579135


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Key Laboratory of E&M, Ministry of Education & Zhejiang Province, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ge", 
        "givenName": "Jiang-qin", 
        "id": "sg:person.07525627522.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07525627522.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Key Laboratory of E&M, Ministry of Education & Zhejiang Province, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Shi-ming", 
        "id": "sg:person.01046153163.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046153163.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Key Laboratory of E&M, Ministry of Education & Zhejiang Province, Zhejiang University of Technology, 310014, Hangzhou, China", 
            "State Key Laboratory of Digital Manufacturing Equipment & Technology, 430074, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "Da-peng", 
        "id": "sg:person.012130642732.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130642732.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.apenergy.2014.12.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000199237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.97-101.3055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002195850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cirp.2013.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002499062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aic.690481103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005390622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-013-4985-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005653280", 
          "https://doi.org/10.1007/s00170-013-4985-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2012.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006818207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2012.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006818207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.stam.2006.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008645758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-015-7392-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009557646", 
          "https://doi.org/10.1007/s00170-015-7392-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0268-1242/22/7/020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010021900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2014.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018652605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-015-8044-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020352508", 
          "https://doi.org/10.1007/s00170-015-8044-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2015.09.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020417288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-010-2589-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023083276", 
          "https://doi.org/10.1007/s00170-010-2589-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-010-2589-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023083276", 
          "https://doi.org/10.1007/s00170-010-2589-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-010-4046-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024609296", 
          "https://doi.org/10.1007/s11431-010-4046-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-010-4046-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024609296", 
          "https://doi.org/10.1007/s11431-010-4046-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2008.02.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026081507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/1432891715z.0000000001620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038344181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0890-6955(99)00114-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039345644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2007.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039350869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12541-014-0560-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040116655", 
          "https://doi.org/10.1007/s12541-014-0560-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12541-014-0560-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040116655", 
          "https://doi.org/10.1007/s12541-014-0560-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2509(01)00386-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041728144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.2000.6658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042388642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10409-012-0147-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044525740", 
          "https://doi.org/10.1007/s10409-012-0147-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aic.690420505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046471232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2003.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052030114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-011-3621-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052942639", 
          "https://doi.org/10.1007/s00170-011-3621-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-011-3621-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052942639", 
          "https://doi.org/10.1007/s00170-011-3621-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2012.2213559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061625762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.53.002012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065130350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3901/jme.2011.17.156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071552767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-017-0226-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084019220", 
          "https://doi.org/10.1007/s00170-017-0226-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-017-0226-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084019220", 
          "https://doi.org/10.1007/s00170-017-0226-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10033-017-0071-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084674297", 
          "https://doi.org/10.1007/s10033-017-0071-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10033-017-0071-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084674297", 
          "https://doi.org/10.1007/s10033-017-0071-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-017-0400-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085050040", 
          "https://doi.org/10.1007/s00170-017-0400-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-017-0400-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085050040", 
          "https://doi.org/10.1007/s00170-017-0400-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1006-706x(17)30101-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090374670", 
          "https://doi.org/10.1016/s1006-706x(17)30101-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03", 
    "datePublishedReg": "2018-03-01", 
    "description": "Soft abrasive flow (SAF) processing presents advantages in avoiding surface damages and adapting complex workpiece shapes. However, the current SAF method exhibits low processing efficiency for materials. To solve this problem, a gas-liquid-solid three-phase abrasive flow processing method (GLSP) based on bubble collapsing is proposed. Through a surface constrained module, a multi-inlet constrained flow passage for silicon wafer processing is constructed, in which the bubbles are injected into the abrasive flow to strengthen the processing efficiency. On the basis of the Euler multi-phase model and population balance model (PBM), a GLSP fluid mechanic model is set up. Simulation results show that the bubble collapse region can be controlled by designing the flow passage structure and that the near-wall particle turbulent motion can be strengthened by decreasing the fluid viscosity. The observation and processing experiments show that the most violent bubble collapsing occurs in the initial constrained surface region. Bubble collapsing can result in an average particle velocity increase from 12.90 to 15.97 m/s. The proposed GLSP method can increase the processing efficiency by 50% compared with the SAF method, and the average surface roughness can reach 2.84 nm.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00170-017-1250-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043671", 
        "issn": [
          "0268-3768", 
          "1433-3015"
        ], 
        "name": "The International Journal of Advanced Manufacturing Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "95"
      }
    ], 
    "name": "A gas-liquid-solid three-phase abrasive flow processing method based on bubble collapsing", 
    "pagination": "1069-1085", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8d7cd023ba28ac0b49bee5103ea826807b09a25128adc18aea9de60ce87d18b8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00170-017-1250-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092579135"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00170-017-1250-9", 
      "https://app.dimensions.ai/details/publication/pub.1092579135"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000609.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00170-017-1250-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-017-1250-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-017-1250-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-017-1250-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-017-1250-9'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00170-017-1250-9 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N5caab971aa6d46f98e16f167cbe534c3
4 schema:citation sg:pub.10.1007/s00170-010-2589-3
5 sg:pub.10.1007/s00170-011-3621-y
6 sg:pub.10.1007/s00170-013-4985-y
7 sg:pub.10.1007/s00170-015-7392-8
8 sg:pub.10.1007/s00170-015-8044-8
9 sg:pub.10.1007/s00170-017-0226-0
10 sg:pub.10.1007/s00170-017-0400-4
11 sg:pub.10.1007/s10033-017-0071-y
12 sg:pub.10.1007/s10409-012-0147-y
13 sg:pub.10.1007/s11431-010-4046-9
14 sg:pub.10.1007/s12541-014-0560-1
15 sg:pub.10.1016/s1006-706x(17)30101-2
16 https://doi.org/10.1002/aic.690420505
17 https://doi.org/10.1002/aic.690481103
18 https://doi.org/10.1006/jcph.2000.6658
19 https://doi.org/10.1016/j.apenergy.2014.12.026
20 https://doi.org/10.1016/j.ces.2003.07.009
21 https://doi.org/10.1016/j.cirp.2013.03.010
22 https://doi.org/10.1016/j.ijmachtools.2007.09.004
23 https://doi.org/10.1016/j.ijmachtools.2012.07.015
24 https://doi.org/10.1016/j.jmatprotec.2008.02.039
25 https://doi.org/10.1016/j.jmatprotec.2015.09.017
26 https://doi.org/10.1016/j.snb.2014.06.014
27 https://doi.org/10.1016/j.stam.2006.12.003
28 https://doi.org/10.1016/s0009-2509(01)00386-4
29 https://doi.org/10.1016/s0890-6955(99)00114-5
30 https://doi.org/10.1088/0268-1242/22/7/020
31 https://doi.org/10.1109/tie.2012.2213559
32 https://doi.org/10.1179/1432891715z.0000000001620
33 https://doi.org/10.1364/ao.53.002012
34 https://doi.org/10.3901/jme.2011.17.156
35 https://doi.org/10.4028/www.scientific.net/amr.97-101.3055
36 schema:datePublished 2018-03
37 schema:datePublishedReg 2018-03-01
38 schema:description Soft abrasive flow (SAF) processing presents advantages in avoiding surface damages and adapting complex workpiece shapes. However, the current SAF method exhibits low processing efficiency for materials. To solve this problem, a gas-liquid-solid three-phase abrasive flow processing method (GLSP) based on bubble collapsing is proposed. Through a surface constrained module, a multi-inlet constrained flow passage for silicon wafer processing is constructed, in which the bubbles are injected into the abrasive flow to strengthen the processing efficiency. On the basis of the Euler multi-phase model and population balance model (PBM), a GLSP fluid mechanic model is set up. Simulation results show that the bubble collapse region can be controlled by designing the flow passage structure and that the near-wall particle turbulent motion can be strengthened by decreasing the fluid viscosity. The observation and processing experiments show that the most violent bubble collapsing occurs in the initial constrained surface region. Bubble collapsing can result in an average particle velocity increase from 12.90 to 15.97 m/s. The proposed GLSP method can increase the processing efficiency by 50% compared with the SAF method, and the average surface roughness can reach 2.84 nm.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N256219851bce42c1a66331841fa113f3
43 Nc2f0c0675e184b7f8ee4744266fdcec0
44 sg:journal.1043671
45 schema:name A gas-liquid-solid three-phase abrasive flow processing method based on bubble collapsing
46 schema:pagination 1069-1085
47 schema:productId Na9cc75a1451e4906811b380c061d51b7
48 Necb7a06988f4495f808d550917ea0e24
49 Nfc7b85dc58ab4384aeeef0427ac660e2
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092579135
51 https://doi.org/10.1007/s00170-017-1250-9
52 schema:sdDatePublished 2019-04-10T21:00
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N89468a5efecf4bb8879d3271ca3e467c
55 schema:url https://link.springer.com/10.1007%2Fs00170-017-1250-9
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0b87b7fb02724f4bb6c8c144f38cd1da rdf:first sg:person.01046153163.59
60 rdf:rest N670a7b03a57b405786855760a1041766
61 N256219851bce42c1a66331841fa113f3 schema:issueNumber 1-4
62 rdf:type schema:PublicationIssue
63 N5caab971aa6d46f98e16f167cbe534c3 rdf:first sg:person.07525627522.21
64 rdf:rest N0b87b7fb02724f4bb6c8c144f38cd1da
65 N670a7b03a57b405786855760a1041766 rdf:first sg:person.012130642732.30
66 rdf:rest rdf:nil
67 N89468a5efecf4bb8879d3271ca3e467c schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Na9cc75a1451e4906811b380c061d51b7 schema:name doi
70 schema:value 10.1007/s00170-017-1250-9
71 rdf:type schema:PropertyValue
72 Nc2f0c0675e184b7f8ee4744266fdcec0 schema:volumeNumber 95
73 rdf:type schema:PublicationVolume
74 Necb7a06988f4495f808d550917ea0e24 schema:name dimensions_id
75 schema:value pub.1092579135
76 rdf:type schema:PropertyValue
77 Nfc7b85dc58ab4384aeeef0427ac660e2 schema:name readcube_id
78 schema:value 8d7cd023ba28ac0b49bee5103ea826807b09a25128adc18aea9de60ce87d18b8
79 rdf:type schema:PropertyValue
80 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
81 schema:name Engineering
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
84 schema:name Interdisciplinary Engineering
85 rdf:type schema:DefinedTerm
86 sg:journal.1043671 schema:issn 0268-3768
87 1433-3015
88 schema:name The International Journal of Advanced Manufacturing Technology
89 rdf:type schema:Periodical
90 sg:person.01046153163.59 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
91 schema:familyName Ji
92 schema:givenName Shi-ming
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046153163.59
94 rdf:type schema:Person
95 sg:person.012130642732.30 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
96 schema:familyName Tan
97 schema:givenName Da-peng
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130642732.30
99 rdf:type schema:Person
100 sg:person.07525627522.21 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
101 schema:familyName Ge
102 schema:givenName Jiang-qin
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07525627522.21
104 rdf:type schema:Person
105 sg:pub.10.1007/s00170-010-2589-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023083276
106 https://doi.org/10.1007/s00170-010-2589-3
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s00170-011-3621-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052942639
109 https://doi.org/10.1007/s00170-011-3621-y
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s00170-013-4985-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1005653280
112 https://doi.org/10.1007/s00170-013-4985-y
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s00170-015-7392-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009557646
115 https://doi.org/10.1007/s00170-015-7392-8
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00170-015-8044-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020352508
118 https://doi.org/10.1007/s00170-015-8044-8
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00170-017-0226-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084019220
121 https://doi.org/10.1007/s00170-017-0226-0
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s00170-017-0400-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085050040
124 https://doi.org/10.1007/s00170-017-0400-4
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s10033-017-0071-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1084674297
127 https://doi.org/10.1007/s10033-017-0071-y
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s10409-012-0147-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1044525740
130 https://doi.org/10.1007/s10409-012-0147-y
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s11431-010-4046-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024609296
133 https://doi.org/10.1007/s11431-010-4046-9
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s12541-014-0560-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040116655
136 https://doi.org/10.1007/s12541-014-0560-1
137 rdf:type schema:CreativeWork
138 sg:pub.10.1016/s1006-706x(17)30101-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090374670
139 https://doi.org/10.1016/s1006-706x(17)30101-2
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1002/aic.690420505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046471232
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1002/aic.690481103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005390622
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1006/jcph.2000.6658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042388642
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.apenergy.2014.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000199237
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ces.2003.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052030114
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.cirp.2013.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002499062
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.ijmachtools.2007.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039350869
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.ijmachtools.2012.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006818207
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.jmatprotec.2008.02.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026081507
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.jmatprotec.2015.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020417288
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.snb.2014.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018652605
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.stam.2006.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008645758
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/s0009-2509(01)00386-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041728144
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s0890-6955(99)00114-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039345644
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1088/0268-1242/22/7/020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010021900
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/tie.2012.2213559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061625762
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1179/1432891715z.0000000001620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038344181
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1364/ao.53.002012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065130350
176 rdf:type schema:CreativeWork
177 https://doi.org/10.3901/jme.2011.17.156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071552767
178 rdf:type schema:CreativeWork
179 https://doi.org/10.4028/www.scientific.net/amr.97-101.3055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002195850
180 rdf:type schema:CreativeWork
181 https://www.grid.ac/institutes/grid.469325.f schema:alternateName Zhejiang University of Technology
182 schema:name Key Laboratory of E&M, Ministry of Education & Zhejiang Province, Zhejiang University of Technology, 310014, Hangzhou, China
183 State Key Laboratory of Digital Manufacturing Equipment & Technology, 430074, Wuhan, China
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...