On the use of machine learning methods to predict component reliability from data-driven industrial case studies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-02

AUTHORS

Emanuel F. Alsina, Manuel Chica, Krzysztof Trawiński, Alberto Regattieri

ABSTRACT

The reliability estimation of engineered components is fundamental for many optimization policies in a production process. The main goal of this paper is to study how machine learning models can fit this reliability estimation function in comparison with traditional approaches (e.g., Weibull distribution). We use a supervised machine learning approach to predict this reliability in 19 industrial components obtained from real industries. Particularly, four diverse machine learning approaches are implemented: artificial neural networks, support vector machines, random forest, and soft computing methods. We evaluate if there is one approach that outperforms the others when predicting the reliability of all the components, analyze if machine learning models improve their performance in the presence of censored data, and finally, understand the performance impact when the number of available inputs changes. Our experimental results show the high ability of machine learning to predict the component reliability and particularly, random forest, which generally obtains high accuracy and the best results for all the cases. Experimentation confirms that all the models improve their performance when considering censored data. Finally, we show how machine learning models obtain better prediction results with respect to traditional methods when increasing the size of the time-to-failure datasets. More... »

PAGES

2419-2433

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00170-017-1039-x

DOI

http://dx.doi.org/10.1007/s00170-017-1039-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091589920


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Modena and Reggio Emilia", 
          "id": "https://www.grid.ac/institutes/grid.7548.e", 
          "name": [
            "Department of Physics, Mathematics and Informatics, University of Modena and Reggio Emilia, 41125, Modena, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alsina", 
        "givenName": "Emanuel F.", 
        "id": "sg:person.07752563217.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07752563217.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Newcastle Australia", 
          "id": "https://www.grid.ac/institutes/grid.266842.c", 
          "name": [
            "R\u00d8D Brand Consultants, 28001, Madrid, Spain", 
            "School of Electrical Engineering and Computing, The University of Newcastle, 2308, Callaghan, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chica", 
        "givenName": "Manuel", 
        "id": "sg:person.014272713471.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014272713471.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Novelti, 28012, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trawi\u0144ski", 
        "givenName": "Krzysztof", 
        "id": "sg:person.012604215723.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012604215723.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bologna", 
          "id": "https://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "Department of Industrial Engineering, University of Bologna, 40136, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Regattieri", 
        "givenName": "Alberto", 
        "id": "sg:person.015233645531.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015233645531.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-45014-9_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000204280", 
          "https://doi.org/10.1007/3-540-45014-9_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45014-9_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000204280", 
          "https://doi.org/10.1007/3-540-45014-9_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-004-2340-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000329375", 
          "https://doi.org/10.1007/s00170-004-2340-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-004-2340-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000329375", 
          "https://doi.org/10.1007/s00170-004-2340-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:stco.0000035301.49549.88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000991887", 
          "https://doi.org/10.1023/b:stco.0000035301.49549.88"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00058655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002929950", 
          "https://doi.org/10.1007/bf00058655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0360-8352(02)00036-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003150782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1568-4946(03)00038-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003560581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1568-4946(03)00038-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003560581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2015.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006039982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-0255(01)00146-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009095292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0019-9958(65)90241-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009640697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0114(03)00111-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009778785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0114(03)00111-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009778785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qre.1773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011196771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0951-8320(99)00052-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011752298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ress.2010.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012883443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-008-0323-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013193478", 
          "https://doi.org/10.1007/s00500-008-0323-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/09544780210447456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013403243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(05)80056-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014360644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(05)80056-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014360644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijleo.2015.11.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014944940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2012.03.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015175709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qre.696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020364130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qre.696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020364130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2011.12.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022873950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2015.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023259262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1568-4946(02)00059-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023891492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1568-4946(02)00059-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023891492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ress.2011.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025487826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12065-007-0001-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025996762", 
          "https://doi.org/10.1007/s12065-007-0001-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12065-007-0001-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025996762", 
          "https://doi.org/10.1007/s12065-007-0001-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2006.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026189953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2008.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027452138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qre.4680110206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029216871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2012.06.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033677525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10845-013-0778-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034682592", 
          "https://doi.org/10.1007/s10845-013-0778-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2016.11.089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034983897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2013.05.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037349545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qre.1221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038439670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-36318-4_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041145295", 
          "https://doi.org/10.1007/978-3-642-36318-4_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijar.2009.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047879589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/175247.175255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047990698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ress.2005.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049286882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ress.2013.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052557779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2012.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053192857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1958.10501452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058299418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/59.744545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061194594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.220.4598.671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062526985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812386533_0015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088710952"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02", 
    "datePublishedReg": "2018-02-01", 
    "description": "The reliability estimation of engineered components is fundamental for many optimization policies in a production process. The main goal of this paper is to study how machine learning models can fit this reliability estimation function in comparison with traditional approaches (e.g., Weibull distribution). We use a supervised machine learning approach to predict this reliability in 19 industrial components obtained from real industries. Particularly, four diverse machine learning approaches are implemented: artificial neural networks, support vector machines, random forest, and soft computing methods. We evaluate if there is one approach that outperforms the others when predicting the reliability of all the components, analyze if machine learning models improve their performance in the presence of censored data, and finally, understand the performance impact when the number of available inputs changes. Our experimental results show the high ability of machine learning to predict the component reliability and particularly, random forest, which generally obtains high accuracy and the best results for all the cases. Experimentation confirms that all the models improve their performance when considering censored data. Finally, we show how machine learning models obtain better prediction results with respect to traditional methods when increasing the size of the time-to-failure datasets.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00170-017-1039-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043671", 
        "issn": [
          "0268-3768", 
          "1433-3015"
        ], 
        "name": "The International Journal of Advanced Manufacturing Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "94"
      }
    ], 
    "name": "On the use of machine learning methods to predict component reliability from data-driven industrial case studies", 
    "pagination": "2419-2433", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f448eb827f9be8846e194e689c9cebd3b4daf64583b769eb9fbefeaef78e27ea"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00170-017-1039-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091589920"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00170-017-1039-x", 
      "https://app.dimensions.ai/details/publication/pub.1091589920"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000517.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00170-017-1039-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-017-1039-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-017-1039-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-017-1039-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-017-1039-x'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      71 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00170-017-1039-x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd724a637127d4053ac273efcadaf7749
4 schema:citation sg:pub.10.1007/3-540-45014-9_1
5 sg:pub.10.1007/978-3-642-36318-4_3
6 sg:pub.10.1007/bf00058655
7 sg:pub.10.1007/bf00994018
8 sg:pub.10.1007/s00170-004-2340-z
9 sg:pub.10.1007/s00500-008-0323-y
10 sg:pub.10.1007/s10845-013-0778-2
11 sg:pub.10.1007/s12065-007-0001-5
12 sg:pub.10.1023/a:1010933404324
13 sg:pub.10.1023/b:stco.0000035301.49549.88
14 https://doi.org/10.1002/qre.1221
15 https://doi.org/10.1002/qre.1773
16 https://doi.org/10.1002/qre.4680110206
17 https://doi.org/10.1002/qre.696
18 https://doi.org/10.1016/j.cie.2008.08.007
19 https://doi.org/10.1016/j.cie.2011.12.023
20 https://doi.org/10.1016/j.cie.2012.02.002
21 https://doi.org/10.1016/j.cie.2012.06.019
22 https://doi.org/10.1016/j.cie.2015.04.008
23 https://doi.org/10.1016/j.cie.2015.12.016
24 https://doi.org/10.1016/j.eswa.2012.03.030
25 https://doi.org/10.1016/j.ijar.2009.09.004
26 https://doi.org/10.1016/j.ijleo.2015.11.024
27 https://doi.org/10.1016/j.ins.2013.05.032
28 https://doi.org/10.1016/j.jclepro.2016.11.089
29 https://doi.org/10.1016/j.ress.2005.12.014
30 https://doi.org/10.1016/j.ress.2010.05.001
31 https://doi.org/10.1016/j.ress.2011.06.006
32 https://doi.org/10.1016/j.ress.2013.08.004
33 https://doi.org/10.1016/j.ymssp.2006.12.007
34 https://doi.org/10.1016/s0019-9958(65)90241-x
35 https://doi.org/10.1016/s0020-0255(01)00146-3
36 https://doi.org/10.1016/s0165-0114(03)00111-8
37 https://doi.org/10.1016/s0360-8352(02)00036-0
38 https://doi.org/10.1016/s0893-6080(05)80056-5
39 https://doi.org/10.1016/s0951-8320(99)00052-6
40 https://doi.org/10.1016/s1568-4946(02)00059-5
41 https://doi.org/10.1016/s1568-4946(03)00038-3
42 https://doi.org/10.1080/01621459.1958.10501452
43 https://doi.org/10.1108/09544780210447456
44 https://doi.org/10.1109/59.744545
45 https://doi.org/10.1126/science.220.4598.671
46 https://doi.org/10.1142/9789812386533_0015
47 https://doi.org/10.1145/175247.175255
48 schema:datePublished 2018-02
49 schema:datePublishedReg 2018-02-01
50 schema:description The reliability estimation of engineered components is fundamental for many optimization policies in a production process. The main goal of this paper is to study how machine learning models can fit this reliability estimation function in comparison with traditional approaches (e.g., Weibull distribution). We use a supervised machine learning approach to predict this reliability in 19 industrial components obtained from real industries. Particularly, four diverse machine learning approaches are implemented: artificial neural networks, support vector machines, random forest, and soft computing methods. We evaluate if there is one approach that outperforms the others when predicting the reliability of all the components, analyze if machine learning models improve their performance in the presence of censored data, and finally, understand the performance impact when the number of available inputs changes. Our experimental results show the high ability of machine learning to predict the component reliability and particularly, random forest, which generally obtains high accuracy and the best results for all the cases. Experimentation confirms that all the models improve their performance when considering censored data. Finally, we show how machine learning models obtain better prediction results with respect to traditional methods when increasing the size of the time-to-failure datasets.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree false
54 schema:isPartOf N093886aa8eed404ab6b0eded80a87599
55 Na5145672a7c3439d9528adf8e964bb97
56 sg:journal.1043671
57 schema:name On the use of machine learning methods to predict component reliability from data-driven industrial case studies
58 schema:pagination 2419-2433
59 schema:productId N074ec5cc73ea4d6b8aafb5466741be4d
60 N8efdaf567e7e43f6a0824d18a973ab65
61 Na99b0045379e4c1394f207894ee209f8
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091589920
63 https://doi.org/10.1007/s00170-017-1039-x
64 schema:sdDatePublished 2019-04-10T19:10
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N0b38f89016c6431c98c5bbeeaa1acfeb
67 schema:url http://link.springer.com/10.1007%2Fs00170-017-1039-x
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N074ec5cc73ea4d6b8aafb5466741be4d schema:name dimensions_id
72 schema:value pub.1091589920
73 rdf:type schema:PropertyValue
74 N093886aa8eed404ab6b0eded80a87599 schema:issueNumber 5-8
75 rdf:type schema:PublicationIssue
76 N0b38f89016c6431c98c5bbeeaa1acfeb schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N1f6ed8ac91354b929c2a35ac28a9bae5 rdf:first sg:person.015233645531.22
79 rdf:rest rdf:nil
80 N62e19d014f254337afc68498b126ffbf rdf:first sg:person.014272713471.17
81 rdf:rest N767ad1cb770b4db1a56bf420af28a539
82 N7332b29e304d43ecb9d51629712a3597 schema:name Novelti, 28012, Madrid, Spain
83 rdf:type schema:Organization
84 N767ad1cb770b4db1a56bf420af28a539 rdf:first sg:person.012604215723.53
85 rdf:rest N1f6ed8ac91354b929c2a35ac28a9bae5
86 N8efdaf567e7e43f6a0824d18a973ab65 schema:name readcube_id
87 schema:value f448eb827f9be8846e194e689c9cebd3b4daf64583b769eb9fbefeaef78e27ea
88 rdf:type schema:PropertyValue
89 Na5145672a7c3439d9528adf8e964bb97 schema:volumeNumber 94
90 rdf:type schema:PublicationVolume
91 Na99b0045379e4c1394f207894ee209f8 schema:name doi
92 schema:value 10.1007/s00170-017-1039-x
93 rdf:type schema:PropertyValue
94 Nd724a637127d4053ac273efcadaf7749 rdf:first sg:person.07752563217.64
95 rdf:rest N62e19d014f254337afc68498b126ffbf
96 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
97 schema:name Information and Computing Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
100 schema:name Artificial Intelligence and Image Processing
101 rdf:type schema:DefinedTerm
102 sg:journal.1043671 schema:issn 0268-3768
103 1433-3015
104 schema:name The International Journal of Advanced Manufacturing Technology
105 rdf:type schema:Periodical
106 sg:person.012604215723.53 schema:affiliation N7332b29e304d43ecb9d51629712a3597
107 schema:familyName Trawiński
108 schema:givenName Krzysztof
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012604215723.53
110 rdf:type schema:Person
111 sg:person.014272713471.17 schema:affiliation https://www.grid.ac/institutes/grid.266842.c
112 schema:familyName Chica
113 schema:givenName Manuel
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014272713471.17
115 rdf:type schema:Person
116 sg:person.015233645531.22 schema:affiliation https://www.grid.ac/institutes/grid.6292.f
117 schema:familyName Regattieri
118 schema:givenName Alberto
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015233645531.22
120 rdf:type schema:Person
121 sg:person.07752563217.64 schema:affiliation https://www.grid.ac/institutes/grid.7548.e
122 schema:familyName Alsina
123 schema:givenName Emanuel F.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07752563217.64
125 rdf:type schema:Person
126 sg:pub.10.1007/3-540-45014-9_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000204280
127 https://doi.org/10.1007/3-540-45014-9_1
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/978-3-642-36318-4_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041145295
130 https://doi.org/10.1007/978-3-642-36318-4_3
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bf00058655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
133 https://doi.org/10.1007/bf00058655
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
136 https://doi.org/10.1007/bf00994018
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s00170-004-2340-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1000329375
139 https://doi.org/10.1007/s00170-004-2340-z
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s00500-008-0323-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1013193478
142 https://doi.org/10.1007/s00500-008-0323-y
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s10845-013-0778-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034682592
145 https://doi.org/10.1007/s10845-013-0778-2
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s12065-007-0001-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025996762
148 https://doi.org/10.1007/s12065-007-0001-5
149 rdf:type schema:CreativeWork
150 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
151 https://doi.org/10.1023/a:1010933404324
152 rdf:type schema:CreativeWork
153 sg:pub.10.1023/b:stco.0000035301.49549.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000991887
154 https://doi.org/10.1023/b:stco.0000035301.49549.88
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/qre.1221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038439670
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/qre.1773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011196771
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/qre.4680110206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029216871
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/qre.696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020364130
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.cie.2008.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027452138
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.cie.2011.12.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022873950
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.cie.2012.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053192857
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.cie.2012.06.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033677525
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.cie.2015.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006039982
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.cie.2015.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023259262
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.eswa.2012.03.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015175709
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.ijar.2009.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047879589
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.ijleo.2015.11.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014944940
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.ins.2013.05.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037349545
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.jclepro.2016.11.089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034983897
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.ress.2005.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049286882
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.ress.2010.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012883443
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.ress.2011.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025487826
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.ress.2013.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052557779
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.ymssp.2006.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026189953
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/s0019-9958(65)90241-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009640697
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/s0020-0255(01)00146-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009095292
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/s0165-0114(03)00111-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009778785
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/s0360-8352(02)00036-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003150782
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/s0893-6080(05)80056-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014360644
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/s0951-8320(99)00052-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011752298
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/s1568-4946(02)00059-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023891492
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/s1568-4946(03)00038-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003560581
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1080/01621459.1958.10501452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058299418
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1108/09544780210447456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013403243
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1109/59.744545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061194594
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1126/science.220.4598.671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062526985
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1142/9789812386533_0015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088710952
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1145/175247.175255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047990698
223 rdf:type schema:CreativeWork
224 https://www.grid.ac/institutes/grid.266842.c schema:alternateName University of Newcastle Australia
225 schema:name RØD Brand Consultants, 28001, Madrid, Spain
226 School of Electrical Engineering and Computing, The University of Newcastle, 2308, Callaghan, NSW, Australia
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.6292.f schema:alternateName University of Bologna
229 schema:name Department of Industrial Engineering, University of Bologna, 40136, Bologna, Italy
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.7548.e schema:alternateName University of Modena and Reggio Emilia
232 schema:name Department of Physics, Mathematics and Informatics, University of Modena and Reggio Emilia, 41125, Modena, Italy
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...