Gas compensation-based abrasive flow processing method for complex titanium alloy surfaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-10

AUTHORS

Li Zhang, Jin-shun Wang, Da-peng Tan, Zhi-min Yuan

ABSTRACT

To resolve the problems of uniformity and efficiency of soft abrasive flow (SAF) processing for complex titanium alloy surfaces, a gas compensation-based abrasive flow (GCAF) processing method is proposed. By the constrained modules, an enclosed flow passage covering the titanium alloy surface is built up, in which the gas phase is injected to enhance the turbulence intensity of abrasive flow. Taking the constrained flow passage as the objective, a three-phase fluid mechanic model for GCAF is set up based on the realizable k-ε model and the mixture model. The profiles of velocity and dynamical pressure of abrasive flow field in the constrained flow passage are obtained, and the turbulence variation regulars caused by gas compensation are revealed. Numerical results show that the proposed method can strengthen the turbulence intensity of abrasive and improve the distribution uniformity of dynamical pressure. A GCAF processing experimental platform is developed, and the experiments are performed. The results prove that the proposed method can obtain better processing efficiency and uniformity, the average surface roughness is less than Ra 0.3, and the surface topograph of micro-peak and micro-valley can reach less than 50 and 10 μm, respectively. More... »

PAGES

3385-3397

References to SciGraph publications

  • 2016-04. Study of temperature and material flow during friction spot welding of 7B04-T74 aluminum alloy in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2013-12. Softness consolidation abrasives material removal characteristic oriented to laser hardening surface in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2009-01. Application of Improved HMM Algorithm in Slag Detection System in JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
  • 2015-09. Mechanical behaviour of friction stir spot welds of polycarbonate sheets in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2010-10. Analytical method for softness abrasive flow field based on discrete phase model in SCIENCE CHINA TECHNOLOGICAL SCIENCES
  • 2017-09. Research on machining characteristic of double-layer elastomer in pneumatic wheel method in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2012-08. Softness abrasive flow method oriented to tiny scale mold structural surface in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2016-08. Fabrication of texturing tool to produce array of square holes for EDM by abrasive water jet machining in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2010-09. Development of vibration style ladle slag detection methods and the key technologies in SCIENCE CHINA TECHNOLOGICAL SCIENCES
  • 2016-07. An improved soft abrasive flow finishing method based on fluid collision theory in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2016-02. Research on dynamic characteristic of softness consolidation abrasives in machining process in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2018-05. An embedded lightweight GUI component library and ergonomics optimization method for industry process monitoring in FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING
  • 2017-03. Improved Soft Abrasive Flow Finishing Method Based on Turbulent Kinetic Energy Enhancing in CHINESE JOURNAL OF MECHANICAL ENGINEERING
  • 2014-10. Investigation on machining characteristic of pneumatic wheel based on softness consolidation abrasives in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00170-017-0400-4

    DOI

    http://dx.doi.org/10.1007/s00170-017-0400-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1085050040


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Zhejiang University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "Key Laboratory of E&M, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, 310014, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Li", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhejiang University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "Key Laboratory of E&M, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, 310014, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Jin-shun", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhejiang University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "Key Laboratory of E&M, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, 310014, Hangzhou, China", 
                "State Key Lab of Digital Manufacturing Equipment and Technology, 430074, Wuhan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tan", 
            "givenName": "Da-peng", 
            "id": "sg:person.012130642732.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130642732.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhejiang University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "Key Laboratory of E&M, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, 310014, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yuan", 
            "givenName": "Zhi-min", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.apenergy.2014.12.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000199237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ces.2016.02.042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001019199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4028/www.scientific.net/amr.97-101.3055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002195850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-013-4985-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005653280", 
              "https://doi.org/10.1007/s00170-013-4985-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-015-7392-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009557646", 
              "https://doi.org/10.1007/s00170-015-7392-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4028/www.scientific.net/amr.188.230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010365151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmecsci.2010.06.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011673289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-015-7681-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016946044", 
              "https://doi.org/10.1007/s00170-015-7681-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.snb.2014.06.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018652605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-015-8044-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020352508", 
              "https://doi.org/10.1007/s00170-015-8044-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4962317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020699557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11431-010-4046-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024609296", 
              "https://doi.org/10.1007/s11431-010-4046-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11431-010-4046-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024609296", 
              "https://doi.org/10.1007/s11431-010-4046-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-015-7875-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027189080", 
              "https://doi.org/10.1007/s00170-015-7875-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11431-010-4073-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027615861", 
              "https://doi.org/10.1007/s11431-010-4073-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11431-010-4073-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027615861", 
              "https://doi.org/10.1007/s11431-010-4073-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elan.201600043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032746726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1179/1432891715z.0000000001620", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038344181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/s1006-706x(09)60001-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039298208", 
              "https://doi.org/10.1016/s1006-706x(09)60001-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-014-0560-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040116655", 
              "https://doi.org/10.1007/s12541-014-0560-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-014-0560-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040116655", 
              "https://doi.org/10.1007/s12541-014-0560-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-015-7007-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044976640", 
              "https://doi.org/10.1007/s00170-015-7007-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-011-3621-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052942639", 
              "https://doi.org/10.1007/s00170-011-3621-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-011-3621-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052942639", 
              "https://doi.org/10.1007/s00170-011-3621-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.chemmater.5b03727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053849874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/te.2012.2212707", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061587821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2012.2213559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061625762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpel.2012.2188043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061758079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3788/ope.20162404.0855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071412216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3901/jme.2010.15.178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071552022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3901/jme.2014.07.084", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071554444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4028/www.scientific.net/kem.499.271", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072084487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-0226-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084019220", 
              "https://doi.org/10.1007/s00170-017-0226-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-017-0226-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084019220", 
              "https://doi.org/10.1007/s00170-017-0226-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10033-017-0071-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084674297", 
              "https://doi.org/10.1007/s10033-017-0071-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10033-017-0071-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084674297", 
              "https://doi.org/10.1007/s10033-017-0071-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1631/fitee.1601660", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105628084", 
              "https://doi.org/10.1631/fitee.1601660"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-10", 
        "datePublishedReg": "2017-10-01", 
        "description": "To resolve the problems of uniformity and efficiency of soft abrasive flow (SAF) processing for complex titanium alloy surfaces, a gas compensation-based abrasive flow (GCAF) processing method is proposed. By the constrained modules, an enclosed flow passage covering the titanium alloy surface is built up, in which the gas phase is injected to enhance the turbulence intensity of abrasive flow. Taking the constrained flow passage as the objective, a three-phase fluid mechanic model for GCAF is set up based on the realizable k-\u03b5 model and the mixture model. The profiles of velocity and dynamical pressure of abrasive flow field in the constrained flow passage are obtained, and the turbulence variation regulars caused by gas compensation are revealed. Numerical results show that the proposed method can strengthen the turbulence intensity of abrasive and improve the distribution uniformity of dynamical pressure. A GCAF processing experimental platform is developed, and the experiments are performed. The results prove that the proposed method can obtain better processing efficiency and uniformity, the average surface roughness is less than Ra 0.3, and the surface topograph of micro-peak and micro-valley can reach less than 50 and 10 \u03bcm, respectively.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00170-017-0400-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043671", 
            "issn": [
              "0268-3768", 
              "1433-3015"
            ], 
            "name": "The International Journal of Advanced Manufacturing Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9-12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "92"
          }
        ], 
        "name": "Gas compensation-based abrasive flow processing method for complex titanium alloy surfaces", 
        "pagination": "3385-3397", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b029a0e6c4c3a45d869c4e4530e2290e03461fcf3ff72c7876972e42dd717b71"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00170-017-0400-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1085050040"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00170-017-0400-4", 
          "https://app.dimensions.ai/details/publication/pub.1085050040"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89807_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00170-017-0400-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-017-0400-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-017-0400-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-017-0400-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-017-0400-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    187 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00170-017-0400-4 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N79170583b7f14fc4b0c50d986d52e4db
    4 schema:citation sg:pub.10.1007/s00170-011-3621-y
    5 sg:pub.10.1007/s00170-013-4985-y
    6 sg:pub.10.1007/s00170-015-7007-4
    7 sg:pub.10.1007/s00170-015-7392-8
    8 sg:pub.10.1007/s00170-015-7681-2
    9 sg:pub.10.1007/s00170-015-7875-7
    10 sg:pub.10.1007/s00170-015-8044-8
    11 sg:pub.10.1007/s00170-017-0226-0
    12 sg:pub.10.1007/s10033-017-0071-y
    13 sg:pub.10.1007/s11431-010-4046-9
    14 sg:pub.10.1007/s11431-010-4073-6
    15 sg:pub.10.1007/s12541-014-0560-1
    16 sg:pub.10.1016/s1006-706x(09)60001-7
    17 sg:pub.10.1631/fitee.1601660
    18 https://doi.org/10.1002/elan.201600043
    19 https://doi.org/10.1016/j.apenergy.2014.12.026
    20 https://doi.org/10.1016/j.ces.2016.02.042
    21 https://doi.org/10.1016/j.ijmecsci.2010.06.009
    22 https://doi.org/10.1016/j.snb.2014.06.014
    23 https://doi.org/10.1021/acs.chemmater.5b03727
    24 https://doi.org/10.1063/1.4962317
    25 https://doi.org/10.1109/te.2012.2212707
    26 https://doi.org/10.1109/tie.2012.2213559
    27 https://doi.org/10.1109/tpel.2012.2188043
    28 https://doi.org/10.1179/1432891715z.0000000001620
    29 https://doi.org/10.3788/ope.20162404.0855
    30 https://doi.org/10.3901/jme.2010.15.178
    31 https://doi.org/10.3901/jme.2014.07.084
    32 https://doi.org/10.4028/www.scientific.net/amr.188.230
    33 https://doi.org/10.4028/www.scientific.net/amr.97-101.3055
    34 https://doi.org/10.4028/www.scientific.net/kem.499.271
    35 schema:datePublished 2017-10
    36 schema:datePublishedReg 2017-10-01
    37 schema:description To resolve the problems of uniformity and efficiency of soft abrasive flow (SAF) processing for complex titanium alloy surfaces, a gas compensation-based abrasive flow (GCAF) processing method is proposed. By the constrained modules, an enclosed flow passage covering the titanium alloy surface is built up, in which the gas phase is injected to enhance the turbulence intensity of abrasive flow. Taking the constrained flow passage as the objective, a three-phase fluid mechanic model for GCAF is set up based on the realizable k-ε model and the mixture model. The profiles of velocity and dynamical pressure of abrasive flow field in the constrained flow passage are obtained, and the turbulence variation regulars caused by gas compensation are revealed. Numerical results show that the proposed method can strengthen the turbulence intensity of abrasive and improve the distribution uniformity of dynamical pressure. A GCAF processing experimental platform is developed, and the experiments are performed. The results prove that the proposed method can obtain better processing efficiency and uniformity, the average surface roughness is less than Ra 0.3, and the surface topograph of micro-peak and micro-valley can reach less than 50 and 10 μm, respectively.
    38 schema:genre research_article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree false
    41 schema:isPartOf Nad0cc8a543c941f4a3716f32f37ec873
    42 Nbc7bd7fdaf584f078ee029617e57d33e
    43 sg:journal.1043671
    44 schema:name Gas compensation-based abrasive flow processing method for complex titanium alloy surfaces
    45 schema:pagination 3385-3397
    46 schema:productId N1f01754547304e188ab45d3002b4c8ba
    47 N434a4533c4ab4f97b1de0200c36cb7f2
    48 Na7b76769ea484a649156594a6eb43133
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085050040
    50 https://doi.org/10.1007/s00170-017-0400-4
    51 schema:sdDatePublished 2019-04-11T09:57
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher N85e0aa03bf6a4fdead89a6e4b345195e
    54 schema:url https://link.springer.com/10.1007%2Fs00170-017-0400-4
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N1f01754547304e188ab45d3002b4c8ba schema:name doi
    59 schema:value 10.1007/s00170-017-0400-4
    60 rdf:type schema:PropertyValue
    61 N2c54ecdb177b4443b9b12a0fd3d0d1b5 rdf:first N97723abdbb36408698c52a31db00b54d
    62 rdf:rest rdf:nil
    63 N434a4533c4ab4f97b1de0200c36cb7f2 schema:name dimensions_id
    64 schema:value pub.1085050040
    65 rdf:type schema:PropertyValue
    66 N79170583b7f14fc4b0c50d986d52e4db rdf:first Ne4e7d20b4f22496787ffbf9a9b370983
    67 rdf:rest N9a7dd43d0d874940ac1f818caacdbeed
    68 N85e0aa03bf6a4fdead89a6e4b345195e schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 N97723abdbb36408698c52a31db00b54d schema:affiliation https://www.grid.ac/institutes/grid.469325.f
    71 schema:familyName Yuan
    72 schema:givenName Zhi-min
    73 rdf:type schema:Person
    74 N9a7dd43d0d874940ac1f818caacdbeed rdf:first Nfa100aea671046189a4c12f5ec67581c
    75 rdf:rest Nb61b434973724a70b5aece8c132a48e3
    76 Na7b76769ea484a649156594a6eb43133 schema:name readcube_id
    77 schema:value b029a0e6c4c3a45d869c4e4530e2290e03461fcf3ff72c7876972e42dd717b71
    78 rdf:type schema:PropertyValue
    79 Nad0cc8a543c941f4a3716f32f37ec873 schema:issueNumber 9-12
    80 rdf:type schema:PublicationIssue
    81 Nb61b434973724a70b5aece8c132a48e3 rdf:first sg:person.012130642732.30
    82 rdf:rest N2c54ecdb177b4443b9b12a0fd3d0d1b5
    83 Nbc7bd7fdaf584f078ee029617e57d33e schema:volumeNumber 92
    84 rdf:type schema:PublicationVolume
    85 Ne4e7d20b4f22496787ffbf9a9b370983 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
    86 schema:familyName Zhang
    87 schema:givenName Li
    88 rdf:type schema:Person
    89 Nfa100aea671046189a4c12f5ec67581c schema:affiliation https://www.grid.ac/institutes/grid.469325.f
    90 schema:familyName Wang
    91 schema:givenName Jin-shun
    92 rdf:type schema:Person
    93 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Engineering
    95 rdf:type schema:DefinedTerm
    96 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Interdisciplinary Engineering
    98 rdf:type schema:DefinedTerm
    99 sg:journal.1043671 schema:issn 0268-3768
    100 1433-3015
    101 schema:name The International Journal of Advanced Manufacturing Technology
    102 rdf:type schema:Periodical
    103 sg:person.012130642732.30 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
    104 schema:familyName Tan
    105 schema:givenName Da-peng
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130642732.30
    107 rdf:type schema:Person
    108 sg:pub.10.1007/s00170-011-3621-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052942639
    109 https://doi.org/10.1007/s00170-011-3621-y
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/s00170-013-4985-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1005653280
    112 https://doi.org/10.1007/s00170-013-4985-y
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/s00170-015-7007-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044976640
    115 https://doi.org/10.1007/s00170-015-7007-4
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s00170-015-7392-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009557646
    118 https://doi.org/10.1007/s00170-015-7392-8
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s00170-015-7681-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016946044
    121 https://doi.org/10.1007/s00170-015-7681-2
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/s00170-015-7875-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027189080
    124 https://doi.org/10.1007/s00170-015-7875-7
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/s00170-015-8044-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020352508
    127 https://doi.org/10.1007/s00170-015-8044-8
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/s00170-017-0226-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084019220
    130 https://doi.org/10.1007/s00170-017-0226-0
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/s10033-017-0071-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1084674297
    133 https://doi.org/10.1007/s10033-017-0071-y
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/s11431-010-4046-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024609296
    136 https://doi.org/10.1007/s11431-010-4046-9
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/s11431-010-4073-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027615861
    139 https://doi.org/10.1007/s11431-010-4073-6
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/s12541-014-0560-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040116655
    142 https://doi.org/10.1007/s12541-014-0560-1
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1016/s1006-706x(09)60001-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039298208
    145 https://doi.org/10.1016/s1006-706x(09)60001-7
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1631/fitee.1601660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105628084
    148 https://doi.org/10.1631/fitee.1601660
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1002/elan.201600043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032746726
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.apenergy.2014.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000199237
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.ces.2016.02.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001019199
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.ijmecsci.2010.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011673289
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.snb.2014.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018652605
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1021/acs.chemmater.5b03727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053849874
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1063/1.4962317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020699557
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/te.2012.2212707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061587821
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/tie.2012.2213559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061625762
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1109/tpel.2012.2188043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061758079
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1179/1432891715z.0000000001620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038344181
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.3788/ope.20162404.0855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071412216
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.3901/jme.2010.15.178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071552022
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.3901/jme.2014.07.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071554444
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.4028/www.scientific.net/amr.188.230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010365151
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.4028/www.scientific.net/amr.97-101.3055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002195850
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.4028/www.scientific.net/kem.499.271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072084487
    183 rdf:type schema:CreativeWork
    184 https://www.grid.ac/institutes/grid.469325.f schema:alternateName Zhejiang University of Technology
    185 schema:name Key Laboratory of E&M, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, 310014, Hangzhou, China
    186 State Key Lab of Digital Manufacturing Equipment and Technology, 430074, Wuhan, China
    187 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...