Ontology type: schema:ScholarlyArticle
2016-09-19
AUTHORSSalah Haridy, Ahmed Maged, Saleh Kaytbay, Sherif Araby
ABSTRACTThe control chart is one of the most powerful techniques in statistical process control (SPC) to monitor processes and ensure quality. The sample size n plays a critical role in the overall performance of any control chart. This article studies the effect of n on the performance of Shewhart control charts, which have traditionally been used for monitoring both the mean and variance of a variable (e.g., the diameter of a shaft and the temperature of a surface). The study is conducted under different combinations of false alarm rate and process shift. The detection speed of the Shewhart charts is evaluated in terms of average extra quadratic loss (AEQL) which is a measure of the overall performance. It is found that n = 2 is the best sample size of the Shewhart X_&R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overset{\_}{\boldsymbol{X}}\&\boldsymbol{R} $$\end{document} and X_&S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overset{\_}{\boldsymbol{X}}\&\boldsymbol{S} $$\end{document} charts. The comparative study reveals that the X_&R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overset{\_}{\boldsymbol{X}}\&\boldsymbol{R} $$\end{document} and X_&S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overset{\_}{\boldsymbol{X}}\&\boldsymbol{S} $$\end{document} charts with n = 2 outperform the X_&R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overset{\_}{\boldsymbol{X}}\&\boldsymbol{R} $$\end{document} and X_&S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overset{\_}{\boldsymbol{X}}\&\boldsymbol{S} $$\end{document} charts with n ≥ 4 by at least 9 and 7 %, respectively, in terms of AEQL. These results contradict the common knowledge in SPC niche that n between 4 and 6 is usually recommended for the X_&R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overset{\_}{\boldsymbol{X}}\&\boldsymbol{R} $$\end{document} and X_&S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overset{\_}{\boldsymbol{X}}\&\boldsymbol{S} $$\end{document} charts. More... »
PAGES1177-1185
http://scigraph.springernature.com/pub.10.1007/s00170-016-9412-8
DOIhttp://dx.doi.org/10.1007/s00170-016-9412-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1019379704
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA",
"id": "http://www.grid.ac/institutes/grid.213917.f",
"name": [
"Benha Faculty of Engineering, Benha University, 13512, Benha, Egypt",
"H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA"
],
"type": "Organization"
},
"familyName": "Haridy",
"givenName": "Salah",
"id": "sg:person.011724742337.32",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724742337.32"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Benha Faculty of Engineering, Benha University, 13512, Benha, Egypt",
"id": "http://www.grid.ac/institutes/grid.411660.4",
"name": [
"Benha Faculty of Engineering, Benha University, 13512, Benha, Egypt"
],
"type": "Organization"
},
"familyName": "Maged",
"givenName": "Ahmed",
"id": "sg:person.015465333662.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015465333662.73"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Benha Faculty of Engineering, Benha University, 13512, Benha, Egypt",
"id": "http://www.grid.ac/institutes/grid.411660.4",
"name": [
"Benha Faculty of Engineering, Benha University, 13512, Benha, Egypt"
],
"type": "Organization"
},
"familyName": "Kaytbay",
"givenName": "Saleh",
"id": "sg:person.015440505067.25",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440505067.25"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Engineering, University of South Australia, SA5095, Mawson Lakes, Australia",
"id": "http://www.grid.ac/institutes/grid.1026.5",
"name": [
"Benha Faculty of Engineering, Benha University, 13512, Benha, Egypt",
"School of Engineering, University of South Australia, SA5095, Mawson Lakes, Australia"
],
"type": "Organization"
},
"familyName": "Araby",
"givenName": "Sherif",
"id": "sg:person.015037551563.85",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015037551563.85"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00170-010-2828-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001927667",
"https://doi.org/10.1007/s00170-010-2828-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00170-014-6048-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039150969",
"https://doi.org/10.1007/s00170-014-6048-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00170-014-6585-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018787375",
"https://doi.org/10.1007/s00170-014-6585-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00170-004-2444-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033924108",
"https://doi.org/10.1007/s00170-004-2444-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00170-012-4413-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019600767",
"https://doi.org/10.1007/s00170-012-4413-8"
],
"type": "CreativeWork"
}
],
"datePublished": "2016-09-19",
"datePublishedReg": "2016-09-19",
"description": "The control chart is one of the most powerful techniques in statistical process control (SPC) to monitor processes and ensure quality. The sample size n plays a critical role in the overall performance of any control chart. This article studies the effect of n on the performance of Shewhart control charts, which have traditionally been used for monitoring both the mean and variance of a variable (e.g., the diameter of a shaft and the temperature of a surface). The study is conducted under different combinations of false alarm rate and process shift. The detection speed of the Shewhart charts is evaluated in terms of average extra quadratic loss (AEQL) which is a measure of the overall performance. It is found that n\u00a0=\u00a02 is the best sample size of the Shewhart X_&R\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\overset{\\_}{\\boldsymbol{X}}\\&\\boldsymbol{R} $$\\end{document} and X_&S\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\overset{\\_}{\\boldsymbol{X}}\\&\\boldsymbol{S} $$\\end{document} charts. The comparative study reveals that the X_&R\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\overset{\\_}{\\boldsymbol{X}}\\&\\boldsymbol{R} $$\\end{document} and X_&S\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\overset{\\_}{\\boldsymbol{X}}\\&\\boldsymbol{S} $$\\end{document} charts with n\u00a0=\u00a02 outperform the X_&R\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\overset{\\_}{\\boldsymbol{X}}\\&\\boldsymbol{R} $$\\end{document} and X_&S\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\overset{\\_}{\\boldsymbol{X}}\\&\\boldsymbol{S} $$\\end{document} charts with n\u00a0\u2265\u00a04 by at least 9 and 7\u00a0%, respectively, in terms of AEQL. These results contradict the common knowledge in SPC niche that n between 4 and 6 is usually recommended for the X_&R\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\overset{\\_}{\\boldsymbol{X}}\\&\\boldsymbol{R} $$\\end{document} and X_&S\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\overset{\\_}{\\boldsymbol{X}}\\&\\boldsymbol{S} $$\\end{document} charts.",
"genre": "article",
"id": "sg:pub.10.1007/s00170-016-9412-8",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1043671",
"issn": [
"0268-3768",
"1433-3015"
],
"name": "The International Journal of Advanced Manufacturing Technology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1-4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "90"
}
],
"keywords": [
"average extra quadratic loss",
"statistical process control",
"Shewhart control charts",
"control charts",
"sample size n",
"extra quadratic loss",
"quadratic loss",
"size n",
"Shewhart chart",
"process shifts",
"process control",
"sample size",
"good sample size",
"false alarm rate",
"powerful technique",
"overall performance",
"alarm rate",
"Shewhart",
"terms",
"performance",
"outperforms",
"variables",
"speed",
"different combinations",
"charts",
"variance",
"size",
"technique",
"comparative study",
"results",
"detection speed",
"control",
"effect",
"process",
"common knowledge",
"combination",
"measures",
"shift",
"article",
"quality",
"study",
"knowledge",
"rate",
"loss",
"role",
"critical role",
"niche"
],
"name": "Effect of sample size on the performance of Shewhart control charts",
"pagination": "1177-1185",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1019379704"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00170-016-9412-8"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00170-016-9412-8",
"https://app.dimensions.ai/details/publication/pub.1019379704"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:13",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_689.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00170-016-9412-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-016-9412-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-016-9412-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-016-9412-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-016-9412-8'
This table displays all metadata directly associated to this object as RDF triples.
154 TRIPLES
22 PREDICATES
76 URIs
63 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00170-016-9412-8 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0102 |
3 | ″ | schema:author | N255fbdbbd54e4f5ab966bbba53c52fed |
4 | ″ | schema:citation | sg:pub.10.1007/s00170-004-2444-5 |
5 | ″ | ″ | sg:pub.10.1007/s00170-010-2828-7 |
6 | ″ | ″ | sg:pub.10.1007/s00170-012-4413-8 |
7 | ″ | ″ | sg:pub.10.1007/s00170-014-6048-4 |
8 | ″ | ″ | sg:pub.10.1007/s00170-014-6585-x |
9 | ″ | schema:datePublished | 2016-09-19 |
10 | ″ | schema:datePublishedReg | 2016-09-19 |
11 | ″ | schema:description | The control chart is one of the most powerful techniques in statistical process control (SPC) to monitor processes and ensure quality. The sample size n plays a critical role in the overall performance of any control chart. This article studies the effect of n on the performance of Shewhart control charts, which have traditionally been used for monitoring both the mean and variance of a variable (e.g., the diameter of a shaft and the temperature of a surface). The study is conducted under different combinations of false alarm rate and process shift. The detection speed of the Shewhart charts is evaluated in terms of average extra quadratic loss (AEQL) which is a measure of the overall performance. It is found that n = 2 is the best sample size of the Shewhart X_&R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overset{\_}{\boldsymbol{X}}\&\boldsymbol{R} $$\end{document} and X_&S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overset{\_}{\boldsymbol{X}}\&\boldsymbol{S} $$\end{document} charts. The comparative study reveals that the X_&R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overset{\_}{\boldsymbol{X}}\&\boldsymbol{R} $$\end{document} and X_&S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overset{\_}{\boldsymbol{X}}\&\boldsymbol{S} $$\end{document} charts with n = 2 outperform the X_&R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overset{\_}{\boldsymbol{X}}\&\boldsymbol{R} $$\end{document} and X_&S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overset{\_}{\boldsymbol{X}}\&\boldsymbol{S} $$\end{document} charts with n ≥ 4 by at least 9 and 7 %, respectively, in terms of AEQL. These results contradict the common knowledge in SPC niche that n between 4 and 6 is usually recommended for the X_&R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overset{\_}{\boldsymbol{X}}\&\boldsymbol{R} $$\end{document} and X_&S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overset{\_}{\boldsymbol{X}}\&\boldsymbol{S} $$\end{document} charts. |
12 | ″ | schema:genre | article |
13 | ″ | schema:inLanguage | en |
14 | ″ | schema:isAccessibleForFree | false |
15 | ″ | schema:isPartOf | N46de1404f3d74db6a912c839434f06eb |
16 | ″ | ″ | Nf941b5c1e23c40d8a0d1ca1ae9f96b7f |
17 | ″ | ″ | sg:journal.1043671 |
18 | ″ | schema:keywords | Shewhart |
19 | ″ | ″ | Shewhart chart |
20 | ″ | ″ | Shewhart control charts |
21 | ″ | ″ | alarm rate |
22 | ″ | ″ | article |
23 | ″ | ″ | average extra quadratic loss |
24 | ″ | ″ | charts |
25 | ″ | ″ | combination |
26 | ″ | ″ | common knowledge |
27 | ″ | ″ | comparative study |
28 | ″ | ″ | control |
29 | ″ | ″ | control charts |
30 | ″ | ″ | critical role |
31 | ″ | ″ | detection speed |
32 | ″ | ″ | different combinations |
33 | ″ | ″ | effect |
34 | ″ | ″ | extra quadratic loss |
35 | ″ | ″ | false alarm rate |
36 | ″ | ″ | good sample size |
37 | ″ | ″ | knowledge |
38 | ″ | ″ | loss |
39 | ″ | ″ | measures |
40 | ″ | ″ | niche |
41 | ″ | ″ | outperforms |
42 | ″ | ″ | overall performance |
43 | ″ | ″ | performance |
44 | ″ | ″ | powerful technique |
45 | ″ | ″ | process |
46 | ″ | ″ | process control |
47 | ″ | ″ | process shifts |
48 | ″ | ″ | quadratic loss |
49 | ″ | ″ | quality |
50 | ″ | ″ | rate |
51 | ″ | ″ | results |
52 | ″ | ″ | role |
53 | ″ | ″ | sample size |
54 | ″ | ″ | sample size n |
55 | ″ | ″ | shift |
56 | ″ | ″ | size |
57 | ″ | ″ | size n |
58 | ″ | ″ | speed |
59 | ″ | ″ | statistical process control |
60 | ″ | ″ | study |
61 | ″ | ″ | technique |
62 | ″ | ″ | terms |
63 | ″ | ″ | variables |
64 | ″ | ″ | variance |
65 | ″ | schema:name | Effect of sample size on the performance of Shewhart control charts |
66 | ″ | schema:pagination | 1177-1185 |
67 | ″ | schema:productId | N1a0db48e9112463d8fc7ef3774d65385 |
68 | ″ | ″ | N3f6d5fdec26c4a55a080d16036e85148 |
69 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1019379704 |
70 | ″ | ″ | https://doi.org/10.1007/s00170-016-9412-8 |
71 | ″ | schema:sdDatePublished | 2022-05-10T10:13 |
72 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
73 | ″ | schema:sdPublisher | N53ad17b40efc4001b5baabd06a21427b |
74 | ″ | schema:url | https://doi.org/10.1007/s00170-016-9412-8 |
75 | ″ | sgo:license | sg:explorer/license/ |
76 | ″ | sgo:sdDataset | articles |
77 | ″ | rdf:type | schema:ScholarlyArticle |
78 | N1a0db48e9112463d8fc7ef3774d65385 | schema:name | doi |
79 | ″ | schema:value | 10.1007/s00170-016-9412-8 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | N255fbdbbd54e4f5ab966bbba53c52fed | rdf:first | sg:person.011724742337.32 |
82 | ″ | rdf:rest | N6085ccde7dfd4604a910451b53301740 |
83 | N3f6d5fdec26c4a55a080d16036e85148 | schema:name | dimensions_id |
84 | ″ | schema:value | pub.1019379704 |
85 | ″ | rdf:type | schema:PropertyValue |
86 | N46de1404f3d74db6a912c839434f06eb | schema:issueNumber | 1-4 |
87 | ″ | rdf:type | schema:PublicationIssue |
88 | N53ad17b40efc4001b5baabd06a21427b | schema:name | Springer Nature - SN SciGraph project |
89 | ″ | rdf:type | schema:Organization |
90 | N6085ccde7dfd4604a910451b53301740 | rdf:first | sg:person.015465333662.73 |
91 | ″ | rdf:rest | Nb769350a020545f39f559379e661d1c7 |
92 | N912ddc76ac3b4686b38b28189d155ef8 | rdf:first | sg:person.015037551563.85 |
93 | ″ | rdf:rest | rdf:nil |
94 | Nb769350a020545f39f559379e661d1c7 | rdf:first | sg:person.015440505067.25 |
95 | ″ | rdf:rest | N912ddc76ac3b4686b38b28189d155ef8 |
96 | Nf941b5c1e23c40d8a0d1ca1ae9f96b7f | schema:volumeNumber | 90 |
97 | ″ | rdf:type | schema:PublicationVolume |
98 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
99 | ″ | schema:name | Mathematical Sciences |
100 | ″ | rdf:type | schema:DefinedTerm |
101 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
102 | ″ | schema:name | Applied Mathematics |
103 | ″ | rdf:type | schema:DefinedTerm |
104 | sg:journal.1043671 | schema:issn | 0268-3768 |
105 | ″ | ″ | 1433-3015 |
106 | ″ | schema:name | The International Journal of Advanced Manufacturing Technology |
107 | ″ | schema:publisher | Springer Nature |
108 | ″ | rdf:type | schema:Periodical |
109 | sg:person.011724742337.32 | schema:affiliation | grid-institutes:grid.213917.f |
110 | ″ | schema:familyName | Haridy |
111 | ″ | schema:givenName | Salah |
112 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724742337.32 |
113 | ″ | rdf:type | schema:Person |
114 | sg:person.015037551563.85 | schema:affiliation | grid-institutes:grid.1026.5 |
115 | ″ | schema:familyName | Araby |
116 | ″ | schema:givenName | Sherif |
117 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015037551563.85 |
118 | ″ | rdf:type | schema:Person |
119 | sg:person.015440505067.25 | schema:affiliation | grid-institutes:grid.411660.4 |
120 | ″ | schema:familyName | Kaytbay |
121 | ″ | schema:givenName | Saleh |
122 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440505067.25 |
123 | ″ | rdf:type | schema:Person |
124 | sg:person.015465333662.73 | schema:affiliation | grid-institutes:grid.411660.4 |
125 | ″ | schema:familyName | Maged |
126 | ″ | schema:givenName | Ahmed |
127 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015465333662.73 |
128 | ″ | rdf:type | schema:Person |
129 | sg:pub.10.1007/s00170-004-2444-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1033924108 |
130 | ″ | ″ | https://doi.org/10.1007/s00170-004-2444-5 |
131 | ″ | rdf:type | schema:CreativeWork |
132 | sg:pub.10.1007/s00170-010-2828-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1001927667 |
133 | ″ | ″ | https://doi.org/10.1007/s00170-010-2828-7 |
134 | ″ | rdf:type | schema:CreativeWork |
135 | sg:pub.10.1007/s00170-012-4413-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1019600767 |
136 | ″ | ″ | https://doi.org/10.1007/s00170-012-4413-8 |
137 | ″ | rdf:type | schema:CreativeWork |
138 | sg:pub.10.1007/s00170-014-6048-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1039150969 |
139 | ″ | ″ | https://doi.org/10.1007/s00170-014-6048-4 |
140 | ″ | rdf:type | schema:CreativeWork |
141 | sg:pub.10.1007/s00170-014-6585-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1018787375 |
142 | ″ | ″ | https://doi.org/10.1007/s00170-014-6585-x |
143 | ″ | rdf:type | schema:CreativeWork |
144 | grid-institutes:grid.1026.5 | schema:alternateName | School of Engineering, University of South Australia, SA5095, Mawson Lakes, Australia |
145 | ″ | schema:name | Benha Faculty of Engineering, Benha University, 13512, Benha, Egypt |
146 | ″ | ″ | School of Engineering, University of South Australia, SA5095, Mawson Lakes, Australia |
147 | ″ | rdf:type | schema:Organization |
148 | grid-institutes:grid.213917.f | schema:alternateName | H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA |
149 | ″ | schema:name | Benha Faculty of Engineering, Benha University, 13512, Benha, Egypt |
150 | ″ | ″ | H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA |
151 | ″ | rdf:type | schema:Organization |
152 | grid-institutes:grid.411660.4 | schema:alternateName | Benha Faculty of Engineering, Benha University, 13512, Benha, Egypt |
153 | ″ | schema:name | Benha Faculty of Engineering, Benha University, 13512, Benha, Egypt |
154 | ″ | rdf:type | schema:Organization |