A review on recent advances in machining methods based on abrasive jet polishing (AJP) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-04

AUTHORS

Fengjun Chen, Xiangliang Miao, Yu Tang, Shaohui Yin

ABSTRACT

Abrasive jet polishing (AJP) is a new non-conventional machining technology for applying to polish the complex surfaces and small areas. Compared with other polishing technologies, AJP has the following advantages: high precision, easy to control, small machining force, good flexibility, without thermal distortion, etc. A review of five main AJP technologies has been conducted to provide an insight into the trends in research of principles, technological method, and impact of polishing quality. Several AJP methods discussed in this work include abrasive water jet polishing, nanoparticle colloid jet polishing, magnetorheological jet polishing, abrasive air jet polishing, and negative pressure cavity jet polishing. The monitoring methods of AJP process are introduced. The jet velocity, material removal, surface roughness, and numerical modeling of jet polishing are also discussed. The effects of some major technological parameters are analyzed. The polish results of metal, glass, and silicon materials are summarized. The probable further research tendency on AJP technology is forecasted. It is a high-potential technology to machine the microstructures and difficult-to-machine materials. More... »

PAGES

785-799

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00170-016-9405-7

DOI

http://dx.doi.org/10.1007/s00170-016-9405-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032989241


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Manufacturing Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hunan University", 
          "id": "https://www.grid.ac/institutes/grid.67293.39", 
          "name": [
            "National Engineering Research Center for High Efficiency Grinding, Hunan University, 410082, Changsha, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Fengjun", 
        "id": "sg:person.014727575605.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014727575605.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan University", 
          "id": "https://www.grid.ac/institutes/grid.67293.39", 
          "name": [
            "National Engineering Research Center for High Efficiency Grinding, Hunan University, 410082, Changsha, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miao", 
        "givenName": "Xiangliang", 
        "id": "sg:person.015133027533.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015133027533.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan University", 
          "id": "https://www.grid.ac/institutes/grid.67293.39", 
          "name": [
            "National Engineering Research Center for High Efficiency Grinding, Hunan University, 410082, Changsha, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Yu", 
        "id": "sg:person.013647066243.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647066243.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan University", 
          "id": "https://www.grid.ac/institutes/grid.67293.39", 
          "name": [
            "National Engineering Research Center for High Efficiency Grinding, Hunan University, 410082, Changsha, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yin", 
        "givenName": "Shaohui", 
        "id": "sg:person.012220010117.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012220010117.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cirp.2013.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002499062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.782917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003112808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.53-54.363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003960844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmapro.2012.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004208931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wear.2013.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006866762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-0233/20/9/095402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007604773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-0233/20/9/095402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007604773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0960-1317/19/5/054009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007696990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0960-1317/19/5/054009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007696990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2014.07.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008055495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-011-3715-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009209788", 
          "https://doi.org/10.1007/s00170-011-3715-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-011-3715-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009209788", 
          "https://doi.org/10.1007/s00170-011-3715-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmecsci.2014.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010449123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-014-6497-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011484640", 
          "https://doi.org/10.1007/s00170-014-6497-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2007.01.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012970318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.623103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014454710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2068001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015093799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2008.10.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015164462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-003-1752-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015650677", 
          "https://doi.org/10.1007/s00170-003-1752-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.325.633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018312535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2009.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018966423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2009.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022315241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.2203650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024005947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.precisioneng.2015.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024520903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.oe.52.4.043401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026718339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-014-6528-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031342408", 
          "https://doi.org/10.1007/s00170-014-6528-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wear.2012.05.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032520019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wear.2008.12.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037331310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2007.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038097792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2007.08.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038490423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2012.04.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038739973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.977357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038890883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.975836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039204276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2069715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041044213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.797.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042862226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-011-3889-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043490009", 
          "https://doi.org/10.1007/s00170-011-3889-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15599612.2014.915603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044480849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.866712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045757543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-012-4555-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046488406", 
          "https://doi.org/10.1007/s00170-012-4555-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.135.361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048119115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2013.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048596475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.24-25.195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048911567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2007.12.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048932100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12206-015-0136-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049009441", 
          "https://doi.org/10.1007/s12206-015-0136-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-012-4182-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049895743", 
          "https://doi.org/10.1007/s00170-012-4182-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.1017.228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050416853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cirp.2009.03.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051834449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2012.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052726813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12541-015-0084-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054526944", 
          "https://doi.org/10.1007/s12541-015-0084-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2963362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057887797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.37.006771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065113687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.49.002947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065125292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.50.002458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065126792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.52.007851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065129804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.53.002012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065130350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.53.007804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065131145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.54.006433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065132340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3788/aos20103002.0513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071389029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3788/col20100803.0323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071399226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3901/jme.2009.05.171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071551161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amm.217-219.2033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071914782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amm.281.469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071924154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.426.396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072009277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.472-475.2037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072015958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/kem.375-376.465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072075484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/kem.431-432.102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072078703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/kem.500.287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072084568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/kem.625.140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072093508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/msf.723.188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072139006"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04", 
    "datePublishedReg": "2017-04-01", 
    "description": "Abrasive jet polishing (AJP) is a new non-conventional machining technology for applying to polish the complex surfaces and small areas. Compared with other polishing technologies, AJP has the following advantages: high precision, easy to control, small machining force, good flexibility, without thermal distortion, etc. A review of five main AJP technologies has been conducted to provide an insight into the trends in research of principles, technological method, and impact of polishing quality. Several AJP methods discussed in this work include abrasive water jet polishing, nanoparticle colloid jet polishing, magnetorheological jet polishing, abrasive air jet polishing, and negative pressure cavity jet polishing. The monitoring methods of AJP process are introduced. The jet velocity, material removal, surface roughness, and numerical modeling of jet polishing are also discussed. The effects of some major technological parameters are analyzed. The polish results of metal, glass, and silicon materials are summarized. The probable further research tendency on AJP technology is forecasted. It is a high-potential technology to machine the microstructures and difficult-to-machine materials.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00170-016-9405-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6993840", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043671", 
        "issn": [
          "0268-3768", 
          "1433-3015"
        ], 
        "name": "The International Journal of Advanced Manufacturing Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "90"
      }
    ], 
    "name": "A review on recent advances in machining methods based on abrasive jet polishing (AJP)", 
    "pagination": "785-799", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9d27fa13655509ca8293b0168bf8dbdfc61b12ec6b5246b729ba7726866a78aa"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00170-016-9405-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032989241"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00170-016-9405-7", 
      "https://app.dimensions.ai/details/publication/pub.1032989241"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70027_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00170-016-9405-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-016-9405-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-016-9405-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-016-9405-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-016-9405-7'


 

This table displays all metadata directly associated to this object as RDF triples.

291 TRIPLES      21 PREDICATES      93 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00170-016-9405-7 schema:about anzsrc-for:09
2 anzsrc-for:0910
3 schema:author N1b9ccb207eb24f46bdd10521328e3b64
4 schema:citation sg:pub.10.1007/s00170-003-1752-5
5 sg:pub.10.1007/s00170-011-3715-6
6 sg:pub.10.1007/s00170-011-3889-y
7 sg:pub.10.1007/s00170-012-4182-4
8 sg:pub.10.1007/s00170-012-4555-8
9 sg:pub.10.1007/s00170-014-6497-9
10 sg:pub.10.1007/s00170-014-6528-6
11 sg:pub.10.1007/s12206-015-0136-8
12 sg:pub.10.1007/s12541-015-0084-3
13 https://doi.org/10.1016/j.cam.2012.04.022
14 https://doi.org/10.1016/j.cirp.2009.03.022
15 https://doi.org/10.1016/j.cirp.2013.03.010
16 https://doi.org/10.1016/j.ijmachtools.2007.08.019
17 https://doi.org/10.1016/j.ijmachtools.2009.05.008
18 https://doi.org/10.1016/j.ijmachtools.2012.05.012
19 https://doi.org/10.1016/j.ijmecsci.2014.09.008
20 https://doi.org/10.1016/j.jmapro.2012.05.004
21 https://doi.org/10.1016/j.jmatprotec.2007.01.039
22 https://doi.org/10.1016/j.jmatprotec.2007.07.014
23 https://doi.org/10.1016/j.jmatprotec.2007.12.145
24 https://doi.org/10.1016/j.jmatprotec.2008.10.021
25 https://doi.org/10.1016/j.jmatprotec.2009.08.011
26 https://doi.org/10.1016/j.jmatprotec.2013.06.020
27 https://doi.org/10.1016/j.powtec.2014.07.018
28 https://doi.org/10.1016/j.precisioneng.2015.04.004
29 https://doi.org/10.1016/j.wear.2008.12.019
30 https://doi.org/10.1016/j.wear.2012.05.029
31 https://doi.org/10.1016/j.wear.2013.03.005
32 https://doi.org/10.1063/1.2963362
33 https://doi.org/10.1080/15599612.2014.915603
34 https://doi.org/10.1088/0957-0233/20/9/095402
35 https://doi.org/10.1088/0960-1317/19/5/054009
36 https://doi.org/10.1117/1.2203650
37 https://doi.org/10.1117/1.oe.52.4.043401
38 https://doi.org/10.1117/12.2068001
39 https://doi.org/10.1117/12.2069715
40 https://doi.org/10.1117/12.623103
41 https://doi.org/10.1117/12.782917
42 https://doi.org/10.1117/12.866712
43 https://doi.org/10.1117/12.975836
44 https://doi.org/10.1117/12.977357
45 https://doi.org/10.1364/ao.37.006771
46 https://doi.org/10.1364/ao.49.002947
47 https://doi.org/10.1364/ao.50.002458
48 https://doi.org/10.1364/ao.52.007851
49 https://doi.org/10.1364/ao.53.002012
50 https://doi.org/10.1364/ao.53.007804
51 https://doi.org/10.1364/ao.54.006433
52 https://doi.org/10.3788/aos20103002.0513
53 https://doi.org/10.3788/col20100803.0323
54 https://doi.org/10.3901/jme.2009.05.171
55 https://doi.org/10.4028/www.scientific.net/amm.217-219.2033
56 https://doi.org/10.4028/www.scientific.net/amm.281.469
57 https://doi.org/10.4028/www.scientific.net/amr.1017.228
58 https://doi.org/10.4028/www.scientific.net/amr.135.361
59 https://doi.org/10.4028/www.scientific.net/amr.24-25.195
60 https://doi.org/10.4028/www.scientific.net/amr.325.633
61 https://doi.org/10.4028/www.scientific.net/amr.426.396
62 https://doi.org/10.4028/www.scientific.net/amr.472-475.2037
63 https://doi.org/10.4028/www.scientific.net/amr.53-54.363
64 https://doi.org/10.4028/www.scientific.net/amr.797.15
65 https://doi.org/10.4028/www.scientific.net/kem.375-376.465
66 https://doi.org/10.4028/www.scientific.net/kem.431-432.102
67 https://doi.org/10.4028/www.scientific.net/kem.500.287
68 https://doi.org/10.4028/www.scientific.net/kem.625.140
69 https://doi.org/10.4028/www.scientific.net/msf.723.188
70 schema:datePublished 2017-04
71 schema:datePublishedReg 2017-04-01
72 schema:description Abrasive jet polishing (AJP) is a new non-conventional machining technology for applying to polish the complex surfaces and small areas. Compared with other polishing technologies, AJP has the following advantages: high precision, easy to control, small machining force, good flexibility, without thermal distortion, etc. A review of five main AJP technologies has been conducted to provide an insight into the trends in research of principles, technological method, and impact of polishing quality. Several AJP methods discussed in this work include abrasive water jet polishing, nanoparticle colloid jet polishing, magnetorheological jet polishing, abrasive air jet polishing, and negative pressure cavity jet polishing. The monitoring methods of AJP process are introduced. The jet velocity, material removal, surface roughness, and numerical modeling of jet polishing are also discussed. The effects of some major technological parameters are analyzed. The polish results of metal, glass, and silicon materials are summarized. The probable further research tendency on AJP technology is forecasted. It is a high-potential technology to machine the microstructures and difficult-to-machine materials.
73 schema:genre research_article
74 schema:inLanguage en
75 schema:isAccessibleForFree false
76 schema:isPartOf N9f8890c3112248b19256966c3f453ccf
77 Nd866f35297d9430e8dbdbc93755828da
78 sg:journal.1043671
79 schema:name A review on recent advances in machining methods based on abrasive jet polishing (AJP)
80 schema:pagination 785-799
81 schema:productId N4796b07f18d048639d1b3caf80bd85c4
82 N79e0925c520345dfbb3489cf78c84133
83 Nb1e61b6430394b35a73e3699fd3aeb54
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032989241
85 https://doi.org/10.1007/s00170-016-9405-7
86 schema:sdDatePublished 2019-04-11T12:35
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher N5a17cc3cf6af4fa8afcd496ca7ef3d71
89 schema:url https://link.springer.com/10.1007%2Fs00170-016-9405-7
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N1b9ccb207eb24f46bdd10521328e3b64 rdf:first sg:person.014727575605.98
94 rdf:rest N4742eeca84ce4cd7bf406ee9b31340de
95 N4742eeca84ce4cd7bf406ee9b31340de rdf:first sg:person.015133027533.85
96 rdf:rest Nac3f8606211f4e86b81d3d6dca634dfb
97 N4796b07f18d048639d1b3caf80bd85c4 schema:name readcube_id
98 schema:value 9d27fa13655509ca8293b0168bf8dbdfc61b12ec6b5246b729ba7726866a78aa
99 rdf:type schema:PropertyValue
100 N5a17cc3cf6af4fa8afcd496ca7ef3d71 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N79e0925c520345dfbb3489cf78c84133 schema:name dimensions_id
103 schema:value pub.1032989241
104 rdf:type schema:PropertyValue
105 N9f8890c3112248b19256966c3f453ccf schema:issueNumber 1-4
106 rdf:type schema:PublicationIssue
107 Nac3f8606211f4e86b81d3d6dca634dfb rdf:first sg:person.013647066243.27
108 rdf:rest Nac5ebe7fed75440888245658ba0c65fd
109 Nac5ebe7fed75440888245658ba0c65fd rdf:first sg:person.012220010117.36
110 rdf:rest rdf:nil
111 Nb1e61b6430394b35a73e3699fd3aeb54 schema:name doi
112 schema:value 10.1007/s00170-016-9405-7
113 rdf:type schema:PropertyValue
114 Nd866f35297d9430e8dbdbc93755828da schema:volumeNumber 90
115 rdf:type schema:PublicationVolume
116 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
117 schema:name Engineering
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
120 schema:name Manufacturing Engineering
121 rdf:type schema:DefinedTerm
122 sg:grant.6993840 http://pending.schema.org/fundedItem sg:pub.10.1007/s00170-016-9405-7
123 rdf:type schema:MonetaryGrant
124 sg:journal.1043671 schema:issn 0268-3768
125 1433-3015
126 schema:name The International Journal of Advanced Manufacturing Technology
127 rdf:type schema:Periodical
128 sg:person.012220010117.36 schema:affiliation https://www.grid.ac/institutes/grid.67293.39
129 schema:familyName Yin
130 schema:givenName Shaohui
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012220010117.36
132 rdf:type schema:Person
133 sg:person.013647066243.27 schema:affiliation https://www.grid.ac/institutes/grid.67293.39
134 schema:familyName Tang
135 schema:givenName Yu
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647066243.27
137 rdf:type schema:Person
138 sg:person.014727575605.98 schema:affiliation https://www.grid.ac/institutes/grid.67293.39
139 schema:familyName Chen
140 schema:givenName Fengjun
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014727575605.98
142 rdf:type schema:Person
143 sg:person.015133027533.85 schema:affiliation https://www.grid.ac/institutes/grid.67293.39
144 schema:familyName Miao
145 schema:givenName Xiangliang
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015133027533.85
147 rdf:type schema:Person
148 sg:pub.10.1007/s00170-003-1752-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015650677
149 https://doi.org/10.1007/s00170-003-1752-5
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s00170-011-3715-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009209788
152 https://doi.org/10.1007/s00170-011-3715-6
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s00170-011-3889-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1043490009
155 https://doi.org/10.1007/s00170-011-3889-y
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s00170-012-4182-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049895743
158 https://doi.org/10.1007/s00170-012-4182-4
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s00170-012-4555-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046488406
161 https://doi.org/10.1007/s00170-012-4555-8
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s00170-014-6497-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011484640
164 https://doi.org/10.1007/s00170-014-6497-9
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s00170-014-6528-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031342408
167 https://doi.org/10.1007/s00170-014-6528-6
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s12206-015-0136-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049009441
170 https://doi.org/10.1007/s12206-015-0136-8
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s12541-015-0084-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054526944
173 https://doi.org/10.1007/s12541-015-0084-3
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.cam.2012.04.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038739973
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.cirp.2009.03.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051834449
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.cirp.2013.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002499062
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.ijmachtools.2007.08.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038490423
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.ijmachtools.2009.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022315241
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.ijmachtools.2012.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052726813
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.ijmecsci.2014.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010449123
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.jmapro.2012.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004208931
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.jmatprotec.2007.01.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012970318
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.jmatprotec.2007.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038097792
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.jmatprotec.2007.12.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048932100
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.jmatprotec.2008.10.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015164462
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.jmatprotec.2009.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018966423
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.jmatprotec.2013.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048596475
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.powtec.2014.07.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008055495
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.precisioneng.2015.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024520903
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.wear.2008.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037331310
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.wear.2012.05.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032520019
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.wear.2013.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006866762
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1063/1.2963362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057887797
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1080/15599612.2014.915603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044480849
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1088/0957-0233/20/9/095402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007604773
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1088/0960-1317/19/5/054009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007696990
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1117/1.2203650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024005947
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1117/1.oe.52.4.043401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026718339
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1117/12.2068001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015093799
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1117/12.2069715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041044213
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1117/12.623103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014454710
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1117/12.782917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003112808
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1117/12.866712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045757543
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1117/12.975836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039204276
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1117/12.977357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038890883
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1364/ao.37.006771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065113687
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1364/ao.49.002947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065125292
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1364/ao.50.002458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065126792
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1364/ao.52.007851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065129804
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1364/ao.53.002012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065130350
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1364/ao.53.007804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065131145
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1364/ao.54.006433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065132340
252 rdf:type schema:CreativeWork
253 https://doi.org/10.3788/aos20103002.0513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071389029
254 rdf:type schema:CreativeWork
255 https://doi.org/10.3788/col20100803.0323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071399226
256 rdf:type schema:CreativeWork
257 https://doi.org/10.3901/jme.2009.05.171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071551161
258 rdf:type schema:CreativeWork
259 https://doi.org/10.4028/www.scientific.net/amm.217-219.2033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071914782
260 rdf:type schema:CreativeWork
261 https://doi.org/10.4028/www.scientific.net/amm.281.469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071924154
262 rdf:type schema:CreativeWork
263 https://doi.org/10.4028/www.scientific.net/amr.1017.228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050416853
264 rdf:type schema:CreativeWork
265 https://doi.org/10.4028/www.scientific.net/amr.135.361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048119115
266 rdf:type schema:CreativeWork
267 https://doi.org/10.4028/www.scientific.net/amr.24-25.195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048911567
268 rdf:type schema:CreativeWork
269 https://doi.org/10.4028/www.scientific.net/amr.325.633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018312535
270 rdf:type schema:CreativeWork
271 https://doi.org/10.4028/www.scientific.net/amr.426.396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072009277
272 rdf:type schema:CreativeWork
273 https://doi.org/10.4028/www.scientific.net/amr.472-475.2037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072015958
274 rdf:type schema:CreativeWork
275 https://doi.org/10.4028/www.scientific.net/amr.53-54.363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003960844
276 rdf:type schema:CreativeWork
277 https://doi.org/10.4028/www.scientific.net/amr.797.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042862226
278 rdf:type schema:CreativeWork
279 https://doi.org/10.4028/www.scientific.net/kem.375-376.465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072075484
280 rdf:type schema:CreativeWork
281 https://doi.org/10.4028/www.scientific.net/kem.431-432.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072078703
282 rdf:type schema:CreativeWork
283 https://doi.org/10.4028/www.scientific.net/kem.500.287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072084568
284 rdf:type schema:CreativeWork
285 https://doi.org/10.4028/www.scientific.net/kem.625.140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072093508
286 rdf:type schema:CreativeWork
287 https://doi.org/10.4028/www.scientific.net/msf.723.188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072139006
288 rdf:type schema:CreativeWork
289 https://www.grid.ac/institutes/grid.67293.39 schema:alternateName Hunan University
290 schema:name National Engineering Research Center for High Efficiency Grinding, Hunan University, 410082, Changsha, People’s Republic of China
291 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...