Dynamic modeling and stability prediction in robotic machining View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-02

AUTHORS

Said Mousavi, Vincent Gagnol, Belhassen C. Bouzgarrou, Pascal Ray

ABSTRACT

Machining with anthropomorphic robotic manipulators is used to increase the flexibility and reduce the costs of production. Productivity in robotic machining processes is limited by low rigidity of robot structure and vibration instability in machining (chatter). Vibration instability analysis in robotic machining process is a challenging issue due to the variability of the dynamic behavior of the robot within its workspace. Hence, a dynamic model which correctly takes these variations into account is important to define the cutting parameters and the robot configurations to be adapted along a machining trajectory. In this paper, a multi-body dynamic model of a serial robot is elaborated using beam elements which can easily be integrated into the machining trajectory planning. The beam element geometry, elasticity, and damping parameters are adjusted on the basis of experimental identifications. A stability diagram based on regenerative chatter in milling operations as a function of the kinematic redundancy variable is established. It is shown that stability in robotic machining can be ensured through the optimization of the robot configurations, without changing the cutting parameters, in order to maintain productivity performance. The predicted stability diagram is validated by experimental robotic machining results. More... »

PAGES

3053-3065

References to SciGraph publications

  • 2008. Structural Synthesis of Parallel Robots in NONE
  • 2016-01. Dynamic characterization of machining robot and stability analysis in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00170-016-8938-0

    DOI

    http://dx.doi.org/10.1007/s00170-016-8938-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044068432


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "SIGMA Clermont, Institut Pascal, Universit\u00e9 Clermont Auvergne, BP 10448, 63000, Clermont Ferrand, France", 
                "CNRS, UMR 6602, IP, 63178, Aubi\u00e8re, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mousavi", 
            "givenName": "Said", 
            "id": "sg:person.07707171267.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07707171267.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "SIGMA Clermont, Institut Pascal, Universit\u00e9 Clermont Auvergne, BP 10448, 63000, Clermont Ferrand, France", 
                "CNRS, UMR 6602, IP, 63178, Aubi\u00e8re, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gagnol", 
            "givenName": "Vincent", 
            "id": "sg:person.015574074665.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574074665.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "SIGMA Clermont, Institut Pascal, Universit\u00e9 Clermont Auvergne, BP 10448, 63000, Clermont Ferrand, France", 
                "CNRS, UMR 6602, IP, 63178, Aubi\u00e8re, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bouzgarrou", 
            "givenName": "Belhassen C.", 
            "id": "sg:person.015427371124.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015427371124.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mines Saint-Etienne", 
              "id": "https://www.grid.ac/institutes/grid.424462.2", 
              "name": [
                "Mines Saint-Etienne, 158, cours Fauriel, CS 62362, 42023, Saint-Etienne Cedex 2, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ray", 
            "givenName": "Pascal", 
            "id": "sg:person.016234703232.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016234703232.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.procir.2014.03.099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003747490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-015-7336-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009646616", 
              "https://doi.org/10.1007/s00170-015-7336-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2013.06.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013436059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.conengprac.2014.03.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023388345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0007-8506(07)62342-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029824668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2014.09.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031412746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-5710-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034568049", 
              "https://doi.org/10.1007/978-1-4020-5710-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-5710-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034568049", 
              "https://doi.org/10.1007/978-1-4020-5710-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jsv.2005.09.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048824981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2006.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052478116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2005.11.033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052844206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4028/www.scientific.net/amm.162.413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071906264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5772/52145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073125510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5772/52145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073125510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5860/choice.38-1582", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073368425"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-02", 
        "datePublishedReg": "2017-02-01", 
        "description": "Machining with anthropomorphic robotic manipulators is used to increase the flexibility and reduce the costs of production. Productivity in robotic machining processes is limited by low rigidity of robot structure and vibration instability in machining (chatter). Vibration instability analysis in robotic machining process is a challenging issue due to the variability of the dynamic behavior of the robot within its workspace. Hence, a dynamic model which correctly takes these variations into account is important to define the cutting parameters and the robot configurations to be adapted along a machining trajectory. In this paper, a multi-body dynamic model of a serial robot is elaborated using beam elements which can easily be integrated into the machining trajectory planning. The beam element geometry, elasticity, and damping parameters are adjusted on the basis of experimental identifications. A stability diagram based on regenerative chatter in milling operations as a function of the kinematic redundancy variable is established. It is shown that stability in robotic machining can be ensured through the optimization of the robot configurations, without changing the cutting parameters, in order to maintain productivity performance. The predicted stability diagram is validated by experimental robotic machining results.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00170-016-8938-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043671", 
            "issn": [
              "0268-3768", 
              "1433-3015"
            ], 
            "name": "The International Journal of Advanced Manufacturing Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9-12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "88"
          }
        ], 
        "name": "Dynamic modeling and stability prediction in robotic machining", 
        "pagination": "3053-3065", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d1e9b231c19e548b8242bdd5ce398c30103983f818682389b2bf31991e48598b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00170-016-8938-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044068432"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00170-016-8938-0", 
          "https://app.dimensions.ai/details/publication/pub.1044068432"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:41", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70056_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00170-016-8938-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-016-8938-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-016-8938-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-016-8938-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-016-8938-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    127 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00170-016-8938-0 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N424cdea71938449fb6338285641dbad3
    4 schema:citation sg:pub.10.1007/978-1-4020-5710-6
    5 sg:pub.10.1007/s00170-015-7336-3
    6 https://doi.org/10.1016/j.conengprac.2014.03.010
    7 https://doi.org/10.1016/j.ijmachtools.2006.09.002
    8 https://doi.org/10.1016/j.ijmachtools.2014.09.014
    9 https://doi.org/10.1016/j.jmatprotec.2005.11.033
    10 https://doi.org/10.1016/j.jmatprotec.2013.06.012
    11 https://doi.org/10.1016/j.jsv.2005.09.034
    12 https://doi.org/10.1016/j.procir.2014.03.099
    13 https://doi.org/10.1016/s0007-8506(07)62342-7
    14 https://doi.org/10.4028/www.scientific.net/amm.162.413
    15 https://doi.org/10.5772/52145
    16 https://doi.org/10.5860/choice.38-1582
    17 schema:datePublished 2017-02
    18 schema:datePublishedReg 2017-02-01
    19 schema:description Machining with anthropomorphic robotic manipulators is used to increase the flexibility and reduce the costs of production. Productivity in robotic machining processes is limited by low rigidity of robot structure and vibration instability in machining (chatter). Vibration instability analysis in robotic machining process is a challenging issue due to the variability of the dynamic behavior of the robot within its workspace. Hence, a dynamic model which correctly takes these variations into account is important to define the cutting parameters and the robot configurations to be adapted along a machining trajectory. In this paper, a multi-body dynamic model of a serial robot is elaborated using beam elements which can easily be integrated into the machining trajectory planning. The beam element geometry, elasticity, and damping parameters are adjusted on the basis of experimental identifications. A stability diagram based on regenerative chatter in milling operations as a function of the kinematic redundancy variable is established. It is shown that stability in robotic machining can be ensured through the optimization of the robot configurations, without changing the cutting parameters, in order to maintain productivity performance. The predicted stability diagram is validated by experimental robotic machining results.
    20 schema:genre research_article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N5739fc371faf44ac86b98cff84317cfd
    24 Na3ffc8ad225045c3aa2ad6d88ba36f2d
    25 sg:journal.1043671
    26 schema:name Dynamic modeling and stability prediction in robotic machining
    27 schema:pagination 3053-3065
    28 schema:productId N0800424d52ad4661935410807124ff18
    29 N390acdf71c5f467fa6bc81911d96a2ef
    30 N503e61635eaf49adadbeb9e71ff7df70
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044068432
    32 https://doi.org/10.1007/s00170-016-8938-0
    33 schema:sdDatePublished 2019-04-11T12:41
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N8e9a4080da034f2d9f08f61440ce8981
    36 schema:url https://link.springer.com/10.1007%2Fs00170-016-8938-0
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N0800424d52ad4661935410807124ff18 schema:name readcube_id
    41 schema:value d1e9b231c19e548b8242bdd5ce398c30103983f818682389b2bf31991e48598b
    42 rdf:type schema:PropertyValue
    43 N390acdf71c5f467fa6bc81911d96a2ef schema:name dimensions_id
    44 schema:value pub.1044068432
    45 rdf:type schema:PropertyValue
    46 N39c65ed8016a43cf9fb641f9ee41736b rdf:first sg:person.015427371124.09
    47 rdf:rest Na7b8419d076d41b3944cbfde97dc1d47
    48 N424cdea71938449fb6338285641dbad3 rdf:first sg:person.07707171267.57
    49 rdf:rest Nd2498f1620594b62b2f2d840a25f4fa0
    50 N503e61635eaf49adadbeb9e71ff7df70 schema:name doi
    51 schema:value 10.1007/s00170-016-8938-0
    52 rdf:type schema:PropertyValue
    53 N5739fc371faf44ac86b98cff84317cfd schema:volumeNumber 88
    54 rdf:type schema:PublicationVolume
    55 N8e9a4080da034f2d9f08f61440ce8981 schema:name Springer Nature - SN SciGraph project
    56 rdf:type schema:Organization
    57 Na3ffc8ad225045c3aa2ad6d88ba36f2d schema:issueNumber 9-12
    58 rdf:type schema:PublicationIssue
    59 Na7b8419d076d41b3944cbfde97dc1d47 rdf:first sg:person.016234703232.11
    60 rdf:rest rdf:nil
    61 Nd2498f1620594b62b2f2d840a25f4fa0 rdf:first sg:person.015574074665.12
    62 rdf:rest N39c65ed8016a43cf9fb641f9ee41736b
    63 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Information and Computing Sciences
    65 rdf:type schema:DefinedTerm
    66 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Artificial Intelligence and Image Processing
    68 rdf:type schema:DefinedTerm
    69 sg:journal.1043671 schema:issn 0268-3768
    70 1433-3015
    71 schema:name The International Journal of Advanced Manufacturing Technology
    72 rdf:type schema:Periodical
    73 sg:person.015427371124.09 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    74 schema:familyName Bouzgarrou
    75 schema:givenName Belhassen C.
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015427371124.09
    77 rdf:type schema:Person
    78 sg:person.015574074665.12 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    79 schema:familyName Gagnol
    80 schema:givenName Vincent
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574074665.12
    82 rdf:type schema:Person
    83 sg:person.016234703232.11 schema:affiliation https://www.grid.ac/institutes/grid.424462.2
    84 schema:familyName Ray
    85 schema:givenName Pascal
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016234703232.11
    87 rdf:type schema:Person
    88 sg:person.07707171267.57 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    89 schema:familyName Mousavi
    90 schema:givenName Said
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07707171267.57
    92 rdf:type schema:Person
    93 sg:pub.10.1007/978-1-4020-5710-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034568049
    94 https://doi.org/10.1007/978-1-4020-5710-6
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/s00170-015-7336-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009646616
    97 https://doi.org/10.1007/s00170-015-7336-3
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/j.conengprac.2014.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023388345
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/j.ijmachtools.2006.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052478116
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/j.ijmachtools.2014.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031412746
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/j.jmatprotec.2005.11.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052844206
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/j.jmatprotec.2013.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013436059
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/j.jsv.2005.09.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048824981
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/j.procir.2014.03.099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003747490
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/s0007-8506(07)62342-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029824668
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.4028/www.scientific.net/amm.162.413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071906264
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.5772/52145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073125510
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.5860/choice.38-1582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073368425
    120 rdf:type schema:CreativeWork
    121 https://www.grid.ac/institutes/grid.424462.2 schema:alternateName Mines Saint-Etienne
    122 schema:name Mines Saint-Etienne, 158, cours Fauriel, CS 62362, 42023, Saint-Etienne Cedex 2, France
    123 rdf:type schema:Organization
    124 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
    125 schema:name CNRS, UMR 6602, IP, 63178, Aubière, France
    126 SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, BP 10448, 63000, Clermont Ferrand, France
    127 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...