Mechanical behavior and void coalescence analysis of cryorolled AA8090 alloy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-05-05

AUTHORS

K. S. V. B. R. Krishna, S. Vigneshwaran, K. Chandra Sekhar, Sarma S. R. Akella, K. Sivaprasad, R. Narayanasamy, K. Venkateswarlu

ABSTRACT

Aluminum lithium alloy was rolled at two different temperatures, viz., 28 °C (301 K) and −196 °C (77 K). The thickness of the alloy was reduced by 75 % from its initial thickness (6 mm) in each condition. X-ray diffraction analysis was carried out on all samples to determine the grain size and dislocation density. The cryorolled sample exhibited a finer grain size with higher dislocation density, which was evidenced from micrographs obtained with transmission electron microscopy. Electron backscattered diffraction images revealed the presence of bimodal grain distribution in the rolled samples, in which the cryorolled sample exhibited a larger amount of ultrafine grains. Both tensile and hardness tests were performed on rolled samples. Cryorolled samples showed superior properties when comparing with room temperature rolled sample. Scanning electron microscopic images of fractured samples were used to analyze the void coalescence behavior. The various void coalescence parameters like void size, void area, length to width ratio of void, and ligament thickness were analyzed, and these results were correlated with microstructure, mechanical properties, crystallite size, and dislocation density in all conditions. More... »

PAGES

253-259

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00170-016-8863-2

DOI

http://dx.doi.org/10.1007/s00170-016-8863-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012195622


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical Center, Ashok Leyland, 600103, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.464758.c", 
          "name": [
            "Advanced Materials Processing Laboratory, Department of Metallurgical and Materials Engineering, National Institute of Technology, 620015, Tiruchirappalli, India", 
            "Technical Center, Ashok Leyland, 600103, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krishna", 
        "givenName": "K. S. V. B. R.", 
        "id": "sg:person.013543414735.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013543414735.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Production Engineering, National Institute of Technology, 620015, Tiruchirappalli, India", 
          "id": "http://www.grid.ac/institutes/grid.419653.c", 
          "name": [
            "Department of Production Engineering, National Institute of Technology, 620015, Tiruchirappalli, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vigneshwaran", 
        "givenName": "S.", 
        "id": "sg:person.015136355735.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015136355735.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Advanced Materials Processing Laboratory, Department of Metallurgical and Materials Engineering, National Institute of Technology, 620015, Tiruchirappalli, India", 
          "id": "http://www.grid.ac/institutes/grid.419653.c", 
          "name": [
            "Advanced Materials Processing Laboratory, Department of Metallurgical and Materials Engineering, National Institute of Technology, 620015, Tiruchirappalli, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sekhar", 
        "givenName": "K. Chandra", 
        "id": "sg:person.010753440141.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010753440141.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical Center, Ashok Leyland, 600103, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.464758.c", 
          "name": [
            "Technical Center, Ashok Leyland, 600103, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akella", 
        "givenName": "Sarma S. R.", 
        "id": "sg:person.010623626135.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010623626135.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Advanced Materials Processing Laboratory, Department of Metallurgical and Materials Engineering, National Institute of Technology, 620015, Tiruchirappalli, India", 
          "id": "http://www.grid.ac/institutes/grid.419653.c", 
          "name": [
            "Advanced Materials Processing Laboratory, Department of Metallurgical and Materials Engineering, National Institute of Technology, 620015, Tiruchirappalli, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sivaprasad", 
        "givenName": "K.", 
        "id": "sg:person.012536275421.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012536275421.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Production Engineering, National Institute of Technology, 620015, Tiruchirappalli, India", 
          "id": "http://www.grid.ac/institutes/grid.419653.c", 
          "name": [
            "Department of Production Engineering, National Institute of Technology, 620015, Tiruchirappalli, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narayanasamy", 
        "givenName": "R.", 
        "id": "sg:person.015240506101.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240506101.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Science Division, CSIR-National Aerospace Laboratories, 560017, Bengaluru, India", 
          "id": "http://www.grid.ac/institutes/grid.462641.3", 
          "name": [
            "Materials Science Division, CSIR-National Aerospace Laboratories, 560017, Bengaluru, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Venkateswarlu", 
        "givenName": "K.", 
        "id": "sg:person.011776234071.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011776234071.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11661-010-0328-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039650532", 
          "https://doi.org/10.1007/s11661-010-0328-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.acme.2013.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040840939", 
          "https://doi.org/10.1016/j.acme.2013.10.009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-015-1324-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035244195", 
          "https://doi.org/10.1007/s11837-015-1324-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009448072", 
          "https://doi.org/10.1038/nature01133"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-05-05", 
    "datePublishedReg": "2016-05-05", 
    "description": "Aluminum lithium alloy was rolled at two different temperatures, viz., 28\u00a0\u00b0C (301\u00a0K) and \u2212196\u00a0\u00b0C (77\u00a0K). The thickness of the alloy was reduced by 75\u00a0% from its initial thickness (6\u00a0mm) in each condition. X-ray diffraction analysis was carried out on all samples to determine the grain size and dislocation density. The cryorolled sample exhibited a finer grain size with higher dislocation density, which was evidenced from micrographs obtained with transmission electron microscopy. Electron backscattered diffraction images revealed the presence of bimodal grain distribution in the rolled samples, in which the cryorolled sample exhibited a larger amount of ultrafine grains. Both tensile and hardness tests were performed on rolled samples. Cryorolled samples showed superior properties when comparing with room temperature rolled sample. Scanning electron microscopic images of fractured samples were used to analyze the void coalescence behavior. The various void coalescence parameters like void size, void area, length to width ratio of void, and ligament thickness were analyzed, and these results were correlated with microstructure, mechanical properties, crystallite size, and dislocation density in all conditions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00170-016-8863-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043671", 
        "issn": [
          "0268-3768", 
          "1433-3015"
        ], 
        "name": "The International Journal of Advanced Manufacturing Technology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "93"
      }
    ], 
    "keywords": [
      "dislocation density", 
      "grain size", 
      "aluminum lithium alloy", 
      "fine grain size", 
      "high dislocation density", 
      "void coalescence parameters", 
      "void coalescence analysis", 
      "ratio of voids", 
      "bimodal grain distribution", 
      "ultrafine grains", 
      "cryorolled samples", 
      "lithium alloy", 
      "rolled samples", 
      "mechanical properties", 
      "mechanical behavior", 
      "hardness test", 
      "superior properties", 
      "initial thickness", 
      "fractured samples", 
      "coalescence behavior", 
      "alloy", 
      "transmission electron microscopy", 
      "grain distribution", 
      "coalescence parameters", 
      "void size", 
      "ligament thickness", 
      "crystallite size", 
      "ray diffraction analysis", 
      "electron microscopic images", 
      "thickness", 
      "void area", 
      "electron microscopy", 
      "different temperatures", 
      "room temperature", 
      "diffraction analysis", 
      "temperature", 
      "microstructure", 
      "density", 
      "properties", 
      "microscopic images", 
      "voids", 
      "diffraction images", 
      "large amount", 
      "size", 
      "behavior", 
      "micrographs", 
      "grains", 
      "conditions", 
      "microscopy", 
      "viz.", 
      "parameters", 
      "images", 
      "samples", 
      "distribution", 
      "test", 
      "ratio", 
      "analysis", 
      "electrons", 
      "amount", 
      "results", 
      "length", 
      "area", 
      "coalescence analysis", 
      "presence", 
      "void coalescence behavior", 
      "AA8090 alloy"
    ], 
    "name": "Mechanical behavior and void coalescence analysis of cryorolled AA8090 alloy", 
    "pagination": "253-259", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012195622"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00170-016-8863-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00170-016-8863-2", 
      "https://app.dimensions.ai/details/publication/pub.1012195622"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_714.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00170-016-8863-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-016-8863-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-016-8863-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-016-8863-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-016-8863-2'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      22 PREDICATES      95 URIs      83 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00170-016-8863-2 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N0914fb00afb54befb56886f7f0c37444
4 schema:citation sg:pub.10.1007/s11661-010-0328-x
5 sg:pub.10.1007/s11837-015-1324-9
6 sg:pub.10.1016/j.acme.2013.10.009
7 sg:pub.10.1038/nature01133
8 schema:datePublished 2016-05-05
9 schema:datePublishedReg 2016-05-05
10 schema:description Aluminum lithium alloy was rolled at two different temperatures, viz., 28 °C (301 K) and −196 °C (77 K). The thickness of the alloy was reduced by 75 % from its initial thickness (6 mm) in each condition. X-ray diffraction analysis was carried out on all samples to determine the grain size and dislocation density. The cryorolled sample exhibited a finer grain size with higher dislocation density, which was evidenced from micrographs obtained with transmission electron microscopy. Electron backscattered diffraction images revealed the presence of bimodal grain distribution in the rolled samples, in which the cryorolled sample exhibited a larger amount of ultrafine grains. Both tensile and hardness tests were performed on rolled samples. Cryorolled samples showed superior properties when comparing with room temperature rolled sample. Scanning electron microscopic images of fractured samples were used to analyze the void coalescence behavior. The various void coalescence parameters like void size, void area, length to width ratio of void, and ligament thickness were analyzed, and these results were correlated with microstructure, mechanical properties, crystallite size, and dislocation density in all conditions.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N257b1a7cec794e3fbc1d56e6aebae060
15 Ne44aa7adea414e7799267f01983f6bdf
16 sg:journal.1043671
17 schema:keywords AA8090 alloy
18 alloy
19 aluminum lithium alloy
20 amount
21 analysis
22 area
23 behavior
24 bimodal grain distribution
25 coalescence analysis
26 coalescence behavior
27 coalescence parameters
28 conditions
29 cryorolled samples
30 crystallite size
31 density
32 different temperatures
33 diffraction analysis
34 diffraction images
35 dislocation density
36 distribution
37 electron microscopic images
38 electron microscopy
39 electrons
40 fine grain size
41 fractured samples
42 grain distribution
43 grain size
44 grains
45 hardness test
46 high dislocation density
47 images
48 initial thickness
49 large amount
50 length
51 ligament thickness
52 lithium alloy
53 mechanical behavior
54 mechanical properties
55 micrographs
56 microscopic images
57 microscopy
58 microstructure
59 parameters
60 presence
61 properties
62 ratio
63 ratio of voids
64 ray diffraction analysis
65 results
66 rolled samples
67 room temperature
68 samples
69 size
70 superior properties
71 temperature
72 test
73 thickness
74 transmission electron microscopy
75 ultrafine grains
76 viz.
77 void area
78 void coalescence analysis
79 void coalescence behavior
80 void coalescence parameters
81 void size
82 voids
83 schema:name Mechanical behavior and void coalescence analysis of cryorolled AA8090 alloy
84 schema:pagination 253-259
85 schema:productId N22a8864ee7d6448e9e5beb4f983dc741
86 Nbd7b19d1f46846c79de1fbb4197ee017
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012195622
88 https://doi.org/10.1007/s00170-016-8863-2
89 schema:sdDatePublished 2021-11-01T18:28
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher Nddfb7960d7d8492397d243d658fa330e
92 schema:url https://doi.org/10.1007/s00170-016-8863-2
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N0914fb00afb54befb56886f7f0c37444 rdf:first sg:person.013543414735.24
97 rdf:rest Nc2a92710ada64981a65d7127498844f4
98 N181c836080b6454c97fdaecf87274754 rdf:first sg:person.015240506101.93
99 rdf:rest Ndb3e00fc800c4d4b9e51bacb9d94836a
100 N1a26176c35754b0db42455ab5a39ea6e rdf:first sg:person.012536275421.46
101 rdf:rest N181c836080b6454c97fdaecf87274754
102 N22a8864ee7d6448e9e5beb4f983dc741 schema:name doi
103 schema:value 10.1007/s00170-016-8863-2
104 rdf:type schema:PropertyValue
105 N257b1a7cec794e3fbc1d56e6aebae060 schema:issueNumber 1-4
106 rdf:type schema:PublicationIssue
107 N8a2c9dadcbce4fec9d11349b3bfe53f1 rdf:first sg:person.010753440141.65
108 rdf:rest Nb5ebd0d5fdd8410588b501e8b051ce02
109 Nb5ebd0d5fdd8410588b501e8b051ce02 rdf:first sg:person.010623626135.33
110 rdf:rest N1a26176c35754b0db42455ab5a39ea6e
111 Nbd7b19d1f46846c79de1fbb4197ee017 schema:name dimensions_id
112 schema:value pub.1012195622
113 rdf:type schema:PropertyValue
114 Nc2a92710ada64981a65d7127498844f4 rdf:first sg:person.015136355735.36
115 rdf:rest N8a2c9dadcbce4fec9d11349b3bfe53f1
116 Ndb3e00fc800c4d4b9e51bacb9d94836a rdf:first sg:person.011776234071.26
117 rdf:rest rdf:nil
118 Nddfb7960d7d8492397d243d658fa330e schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 Ne44aa7adea414e7799267f01983f6bdf schema:volumeNumber 93
121 rdf:type schema:PublicationVolume
122 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
123 schema:name Engineering
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
126 schema:name Materials Engineering
127 rdf:type schema:DefinedTerm
128 sg:journal.1043671 schema:issn 0268-3768
129 1433-3015
130 schema:name The International Journal of Advanced Manufacturing Technology
131 schema:publisher Springer Nature
132 rdf:type schema:Periodical
133 sg:person.010623626135.33 schema:affiliation grid-institutes:grid.464758.c
134 schema:familyName Akella
135 schema:givenName Sarma S. R.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010623626135.33
137 rdf:type schema:Person
138 sg:person.010753440141.65 schema:affiliation grid-institutes:grid.419653.c
139 schema:familyName Sekhar
140 schema:givenName K. Chandra
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010753440141.65
142 rdf:type schema:Person
143 sg:person.011776234071.26 schema:affiliation grid-institutes:grid.462641.3
144 schema:familyName Venkateswarlu
145 schema:givenName K.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011776234071.26
147 rdf:type schema:Person
148 sg:person.012536275421.46 schema:affiliation grid-institutes:grid.419653.c
149 schema:familyName Sivaprasad
150 schema:givenName K.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012536275421.46
152 rdf:type schema:Person
153 sg:person.013543414735.24 schema:affiliation grid-institutes:grid.464758.c
154 schema:familyName Krishna
155 schema:givenName K. S. V. B. R.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013543414735.24
157 rdf:type schema:Person
158 sg:person.015136355735.36 schema:affiliation grid-institutes:grid.419653.c
159 schema:familyName Vigneshwaran
160 schema:givenName S.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015136355735.36
162 rdf:type schema:Person
163 sg:person.015240506101.93 schema:affiliation grid-institutes:grid.419653.c
164 schema:familyName Narayanasamy
165 schema:givenName R.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240506101.93
167 rdf:type schema:Person
168 sg:pub.10.1007/s11661-010-0328-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039650532
169 https://doi.org/10.1007/s11661-010-0328-x
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s11837-015-1324-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035244195
172 https://doi.org/10.1007/s11837-015-1324-9
173 rdf:type schema:CreativeWork
174 sg:pub.10.1016/j.acme.2013.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040840939
175 https://doi.org/10.1016/j.acme.2013.10.009
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nature01133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009448072
178 https://doi.org/10.1038/nature01133
179 rdf:type schema:CreativeWork
180 grid-institutes:grid.419653.c schema:alternateName Advanced Materials Processing Laboratory, Department of Metallurgical and Materials Engineering, National Institute of Technology, 620015, Tiruchirappalli, India
181 Department of Production Engineering, National Institute of Technology, 620015, Tiruchirappalli, India
182 schema:name Advanced Materials Processing Laboratory, Department of Metallurgical and Materials Engineering, National Institute of Technology, 620015, Tiruchirappalli, India
183 Department of Production Engineering, National Institute of Technology, 620015, Tiruchirappalli, India
184 rdf:type schema:Organization
185 grid-institutes:grid.462641.3 schema:alternateName Materials Science Division, CSIR-National Aerospace Laboratories, 560017, Bengaluru, India
186 schema:name Materials Science Division, CSIR-National Aerospace Laboratories, 560017, Bengaluru, India
187 rdf:type schema:Organization
188 grid-institutes:grid.464758.c schema:alternateName Technical Center, Ashok Leyland, 600103, Chennai, India
189 schema:name Advanced Materials Processing Laboratory, Department of Metallurgical and Materials Engineering, National Institute of Technology, 620015, Tiruchirappalli, India
190 Technical Center, Ashok Leyland, 600103, Chennai, India
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...