Ontology type: schema:ScholarlyArticle
2016-01-09
AUTHORSM. Shamsuzzaman, M. B. C. Khoo, S. Haridy, I. Alsyouf
ABSTRACTThis article presents an optimization design of the combined Shewhart X¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{X} $$\end{document} chart and exponentially weighted moving average (EWMA) chart (X¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{X} $$\end{document}&EWMA chart in short) used in statistical process control (SPC). The design algorithm not only optimizes the charting parameters of the X¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{X} $$\end{document} chart and EWMA chart, but also optimizes the allocation of detection power between the two charts’ elements, based on the loss function, so that the best overall performance can be achieved. The optimization design is carried out under the constraints on the false alarm rate and available resources. While the optimization design effectively improves the overall performance of the X¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{X} $$\end{document}&EWMA chart over the entire process shift range, it does not increase the difficulty of understanding and implementing this combined chart. A 2k factorial experiment shows that the optimal X¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{X} $$\end{document}&EWMA chart outperforms the main competitor, the basic X¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{X} $$\end{document}&EWMA chart, by about 50 %, on average. Moreover, this article provides the SPC practitioners with a design table to facilitate the designs of the X¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{X} $$\end{document}&EWMA charts. From this design table, the users can directly find the optimal values of the charting parameters according to the design specifications. More... »
PAGES1627-1637
http://scigraph.springernature.com/pub.10.1007/s00170-015-8307-4
DOIhttp://dx.doi.org/10.1007/s00170-015-8307-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1023308807
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Industrial Engineering and Engineering Management, College of Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates",
"id": "http://www.grid.ac/institutes/grid.412789.1",
"name": [
"Department of Industrial Engineering and Engineering Management, College of Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates"
],
"type": "Organization"
},
"familyName": "Shamsuzzaman",
"givenName": "M.",
"id": "sg:person.016427762425.56",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016427762425.56"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Mathematical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia",
"id": "http://www.grid.ac/institutes/grid.11875.3a",
"name": [
"School of Mathematical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia"
],
"type": "Organization"
},
"familyName": "Khoo",
"givenName": "M. B. C.",
"id": "sg:person.01005704341.86",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005704341.86"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Benha Faculty of Engineering, Benha University, 13512, Benha, Egypt",
"id": "http://www.grid.ac/institutes/grid.411660.4",
"name": [
"Benha Faculty of Engineering, Benha University, 13512, Benha, Egypt"
],
"type": "Organization"
},
"familyName": "Haridy",
"givenName": "S.",
"id": "sg:person.011724742337.32",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724742337.32"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Industrial Engineering and Engineering Management, College of Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates",
"id": "http://www.grid.ac/institutes/grid.412789.1",
"name": [
"Department of Industrial Engineering and Engineering Management, College of Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates"
],
"type": "Organization"
},
"familyName": "Alsyouf",
"givenName": "I.",
"id": "sg:person.011235237267.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011235237267.34"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00170-011-3345-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023420701",
"https://doi.org/10.1007/s00170-011-3345-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00170-006-0803-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049973796",
"https://doi.org/10.1007/s00170-006-0803-0"
],
"type": "CreativeWork"
}
],
"datePublished": "2016-01-09",
"datePublishedReg": "2016-01-09",
"description": "This article presents an optimization design of the combined Shewhart X\u00af\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\overline{X} $$\\end{document} chart and exponentially weighted moving average (EWMA) chart (X\u00af\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\overline{X} $$\\end{document}&EWMA chart in short) used in statistical process control (SPC). The design algorithm not only optimizes the charting parameters of the X\u00af\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\overline{X} $$\\end{document} chart and EWMA chart, but also optimizes the allocation of detection power between the two charts\u2019 elements, based on the loss function, so that the best overall performance can be achieved. The optimization design is carried out under the constraints on the false alarm rate and available resources. While the optimization design effectively improves the overall performance of the X\u00af\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\overline{X} $$\\end{document}&EWMA chart over the entire process shift range, it does not increase the difficulty of understanding and implementing this combined chart. A 2k factorial experiment shows that the optimal X\u00af\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\overline{X} $$\\end{document}&EWMA chart outperforms the main competitor, the basic X\u00af\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\overline{X} $$\\end{document}&EWMA chart, by about 50\u00a0%, on average. Moreover, this article provides the SPC practitioners with a design table to facilitate the designs of the X\u00af\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\overline{X} $$\\end{document}&EWMA charts. From this design table, the users can directly find the optimal values of the charting parameters according to the design specifications.",
"genre": "article",
"id": "sg:pub.10.1007/s00170-015-8307-4",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1043671",
"issn": [
"0268-3768",
"1433-3015"
],
"name": "The International Journal of Advanced Manufacturing Technology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "5-8",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "86"
}
],
"keywords": [
"statistical process control",
"optimization design",
"entire process shift range",
"SPC practitioners",
"average chart",
"control charts",
"optimal value",
"loss function",
"process control",
"design tables",
"best overall performance",
"false alarm rate",
"detection power",
"overall performance",
"alarm rate",
"Shewhart",
"parameters",
"EWMA",
"design specifications",
"constraints",
"design",
"available resources",
"performance",
"main competitors",
"table",
"allocation",
"function",
"charts",
"elements",
"power",
"chart elements",
"specification",
"experiments",
"control",
"values",
"range",
"difficulties",
"factorial experiment",
"shift range",
"article",
"users",
"resources",
"competitors",
"rate",
"practitioners"
],
"name": "An optimization design of the combined Shewhart-EWMA control chart",
"pagination": "1627-1637",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1023308807"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00170-015-8307-4"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00170-015-8307-4",
"https://app.dimensions.ai/details/publication/pub.1023308807"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:31",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_697.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00170-015-8307-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-015-8307-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-015-8307-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-015-8307-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-015-8307-4'
This table displays all metadata directly associated to this object as RDF triples.
138 TRIPLES
22 PREDICATES
71 URIs
61 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00170-015-8307-4 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0102 |
3 | ″ | schema:author | N3bbdd99f9d8b4117ac3b8f42d0c702e6 |
4 | ″ | schema:citation | sg:pub.10.1007/s00170-006-0803-0 |
5 | ″ | ″ | sg:pub.10.1007/s00170-011-3345-z |
6 | ″ | schema:datePublished | 2016-01-09 |
7 | ″ | schema:datePublishedReg | 2016-01-09 |
8 | ″ | schema:description | This article presents an optimization design of the combined Shewhart X¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{X} $$\end{document} chart and exponentially weighted moving average (EWMA) chart (X¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{X} $$\end{document}&EWMA chart in short) used in statistical process control (SPC). The design algorithm not only optimizes the charting parameters of the X¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{X} $$\end{document} chart and EWMA chart, but also optimizes the allocation of detection power between the two charts’ elements, based on the loss function, so that the best overall performance can be achieved. The optimization design is carried out under the constraints on the false alarm rate and available resources. While the optimization design effectively improves the overall performance of the X¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{X} $$\end{document}&EWMA chart over the entire process shift range, it does not increase the difficulty of understanding and implementing this combined chart. A 2k factorial experiment shows that the optimal X¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{X} $$\end{document}&EWMA chart outperforms the main competitor, the basic X¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{X} $$\end{document}&EWMA chart, by about 50 %, on average. Moreover, this article provides the SPC practitioners with a design table to facilitate the designs of the X¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{X} $$\end{document}&EWMA charts. From this design table, the users can directly find the optimal values of the charting parameters according to the design specifications. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N480b1e2cace14a488da96907774b1b44 |
13 | ″ | ″ | Nff73c3a0221145d09ef4147d49e8eab3 |
14 | ″ | ″ | sg:journal.1043671 |
15 | ″ | schema:keywords | EWMA |
16 | ″ | ″ | SPC practitioners |
17 | ″ | ″ | Shewhart |
18 | ″ | ″ | alarm rate |
19 | ″ | ″ | allocation |
20 | ″ | ″ | article |
21 | ″ | ″ | available resources |
22 | ″ | ″ | average chart |
23 | ″ | ″ | best overall performance |
24 | ″ | ″ | chart elements |
25 | ″ | ″ | charts |
26 | ″ | ″ | competitors |
27 | ″ | ″ | constraints |
28 | ″ | ″ | control |
29 | ″ | ″ | control charts |
30 | ″ | ″ | design |
31 | ″ | ″ | design specifications |
32 | ″ | ″ | design tables |
33 | ″ | ″ | detection power |
34 | ″ | ″ | difficulties |
35 | ″ | ″ | elements |
36 | ″ | ″ | entire process shift range |
37 | ″ | ″ | experiments |
38 | ″ | ″ | factorial experiment |
39 | ″ | ″ | false alarm rate |
40 | ″ | ″ | function |
41 | ″ | ″ | loss function |
42 | ″ | ″ | main competitors |
43 | ″ | ″ | optimal value |
44 | ″ | ″ | optimization design |
45 | ″ | ″ | overall performance |
46 | ″ | ″ | parameters |
47 | ″ | ″ | performance |
48 | ″ | ″ | power |
49 | ″ | ″ | practitioners |
50 | ″ | ″ | process control |
51 | ″ | ″ | range |
52 | ″ | ″ | rate |
53 | ″ | ″ | resources |
54 | ″ | ″ | shift range |
55 | ″ | ″ | specification |
56 | ″ | ″ | statistical process control |
57 | ″ | ″ | table |
58 | ″ | ″ | users |
59 | ″ | ″ | values |
60 | ″ | schema:name | An optimization design of the combined Shewhart-EWMA control chart |
61 | ″ | schema:pagination | 1627-1637 |
62 | ″ | schema:productId | N504c7a815e074ddf95b9be1efbe2cfed |
63 | ″ | ″ | N67636e4e3d764f4da6ccdc7e92f892b6 |
64 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1023308807 |
65 | ″ | ″ | https://doi.org/10.1007/s00170-015-8307-4 |
66 | ″ | schema:sdDatePublished | 2022-05-20T07:31 |
67 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
68 | ″ | schema:sdPublisher | N280987635895496b850742044d6314da |
69 | ″ | schema:url | https://doi.org/10.1007/s00170-015-8307-4 |
70 | ″ | sgo:license | sg:explorer/license/ |
71 | ″ | sgo:sdDataset | articles |
72 | ″ | rdf:type | schema:ScholarlyArticle |
73 | N280987635895496b850742044d6314da | schema:name | Springer Nature - SN SciGraph project |
74 | ″ | rdf:type | schema:Organization |
75 | N3bbdd99f9d8b4117ac3b8f42d0c702e6 | rdf:first | sg:person.016427762425.56 |
76 | ″ | rdf:rest | Nca1891d370f64aae9a6b1a3939f358f4 |
77 | N480b1e2cace14a488da96907774b1b44 | schema:volumeNumber | 86 |
78 | ″ | rdf:type | schema:PublicationVolume |
79 | N504c7a815e074ddf95b9be1efbe2cfed | schema:name | dimensions_id |
80 | ″ | schema:value | pub.1023308807 |
81 | ″ | rdf:type | schema:PropertyValue |
82 | N67636e4e3d764f4da6ccdc7e92f892b6 | schema:name | doi |
83 | ″ | schema:value | 10.1007/s00170-015-8307-4 |
84 | ″ | rdf:type | schema:PropertyValue |
85 | N963bea4996e14f1a97c7a54e2ce9c00b | rdf:first | sg:person.011235237267.34 |
86 | ″ | rdf:rest | rdf:nil |
87 | Nc8f2e3ea20a64b6e9955deb8ba57a464 | rdf:first | sg:person.011724742337.32 |
88 | ″ | rdf:rest | N963bea4996e14f1a97c7a54e2ce9c00b |
89 | Nca1891d370f64aae9a6b1a3939f358f4 | rdf:first | sg:person.01005704341.86 |
90 | ″ | rdf:rest | Nc8f2e3ea20a64b6e9955deb8ba57a464 |
91 | Nff73c3a0221145d09ef4147d49e8eab3 | schema:issueNumber | 5-8 |
92 | ″ | rdf:type | schema:PublicationIssue |
93 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
94 | ″ | schema:name | Mathematical Sciences |
95 | ″ | rdf:type | schema:DefinedTerm |
96 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
97 | ″ | schema:name | Applied Mathematics |
98 | ″ | rdf:type | schema:DefinedTerm |
99 | sg:journal.1043671 | schema:issn | 0268-3768 |
100 | ″ | ″ | 1433-3015 |
101 | ″ | schema:name | The International Journal of Advanced Manufacturing Technology |
102 | ″ | schema:publisher | Springer Nature |
103 | ″ | rdf:type | schema:Periodical |
104 | sg:person.01005704341.86 | schema:affiliation | grid-institutes:grid.11875.3a |
105 | ″ | schema:familyName | Khoo |
106 | ″ | schema:givenName | M. B. C. |
107 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005704341.86 |
108 | ″ | rdf:type | schema:Person |
109 | sg:person.011235237267.34 | schema:affiliation | grid-institutes:grid.412789.1 |
110 | ″ | schema:familyName | Alsyouf |
111 | ″ | schema:givenName | I. |
112 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011235237267.34 |
113 | ″ | rdf:type | schema:Person |
114 | sg:person.011724742337.32 | schema:affiliation | grid-institutes:grid.411660.4 |
115 | ″ | schema:familyName | Haridy |
116 | ″ | schema:givenName | S. |
117 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724742337.32 |
118 | ″ | rdf:type | schema:Person |
119 | sg:person.016427762425.56 | schema:affiliation | grid-institutes:grid.412789.1 |
120 | ″ | schema:familyName | Shamsuzzaman |
121 | ″ | schema:givenName | M. |
122 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016427762425.56 |
123 | ″ | rdf:type | schema:Person |
124 | sg:pub.10.1007/s00170-006-0803-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049973796 |
125 | ″ | ″ | https://doi.org/10.1007/s00170-006-0803-0 |
126 | ″ | rdf:type | schema:CreativeWork |
127 | sg:pub.10.1007/s00170-011-3345-z | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1023420701 |
128 | ″ | ″ | https://doi.org/10.1007/s00170-011-3345-z |
129 | ″ | rdf:type | schema:CreativeWork |
130 | grid-institutes:grid.11875.3a | schema:alternateName | School of Mathematical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia |
131 | ″ | schema:name | School of Mathematical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia |
132 | ″ | rdf:type | schema:Organization |
133 | grid-institutes:grid.411660.4 | schema:alternateName | Benha Faculty of Engineering, Benha University, 13512, Benha, Egypt |
134 | ″ | schema:name | Benha Faculty of Engineering, Benha University, 13512, Benha, Egypt |
135 | ″ | rdf:type | schema:Organization |
136 | grid-institutes:grid.412789.1 | schema:alternateName | Department of Industrial Engineering and Engineering Management, College of Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates |
137 | ″ | schema:name | Department of Industrial Engineering and Engineering Management, College of Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates |
138 | ″ | rdf:type | schema:Organization |