Crack-free selective laser melting of silica glass: single beads and monolayers on the substrate of the same material View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-07

AUTHORS

R. S. Khmyrov, C. E. Protasov, S. N. Grigoriev, A. V. Gusarov

ABSTRACT

Selective laser melting (SLM) is recognized for additive manufacturing from metals and alloys. Application of this technique to ceramic materials could also be promising. However, ceramics are brittle and often crack during this process. Silica glass is promising for obtaining crack-free ceramic parts due to its extremely low thermal expansion coefficient. The carried out experiments are elementary steps of SLM. Powder of particles <20 μm is deposited on a thick substrate to form layers of thickness from 100 to 200 μm. The obtained sandwich-like target is scanned with the laser beam of 10.6 μm wavelength. Cracking of silica glass is not observed at laser treatment. The quality of the obtained single beads is very sensitive to the laser power and the scanning velocity. This indicates that consolidation of powder requires a narrow temperature interval. A precise control of laser parameters is necessary to maintain the temperature within this range. Such control can be difficult to attain for industrial SLM machines. The theoretical analysis of consolidation kinetics shows that the best solution of this problem would be using powder with smaller particle size. The beads of consolidated powder can be superposed to form a uniform layer on the substrate. The lower is the thickness of the powder layer, the better is the quality of the consolidated layer. This is because of more uniform heating of finer layers by laser. More... »

PAGES

1461-1469

References to SciGraph publications

  • 2012-06. Study on direct fabrication of ceramic shell mold with slurry-based ceramic laser fusion and ceramic laser sintering in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2015-09. Influence of process parameters on surface quality of CoCrMo produced by selective laser melting in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2013-09. Energy density analysis on single tracks formed by selective laser melting with CoCrMo powder material in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2013-10. Processing and characterization of laser-sintered Al2O3/ZrO2/SiO2 in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2006-10. Rapid prototyping machine based on ceramic laser fusion in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00170-015-8051-9

    DOI

    http://dx.doi.org/10.1007/s00170-015-8051-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045086560


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Moscow State Technological University", 
              "id": "https://www.grid.ac/institutes/grid.446318.c", 
              "name": [
                "Moscow State University of Technology \u201cSTANKIN\u201d, Vadkovsky per. 3a, 127055, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khmyrov", 
            "givenName": "R. S.", 
            "id": "sg:person.011447476515.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011447476515.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow State Technological University", 
              "id": "https://www.grid.ac/institutes/grid.446318.c", 
              "name": [
                "Moscow State University of Technology \u201cSTANKIN\u201d, Vadkovsky per. 3a, 127055, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Protasov", 
            "givenName": "C. E.", 
            "id": "sg:person.015720264026.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015720264026.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow State Technological University", 
              "id": "https://www.grid.ac/institutes/grid.446318.c", 
              "name": [
                "Moscow State University of Technology \u201cSTANKIN\u201d, Vadkovsky per. 3a, 127055, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grigoriev", 
            "givenName": "S. N.", 
            "id": "sg:person.015512456231.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015512456231.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow State Technological University", 
              "id": "https://www.grid.ac/institutes/grid.446318.c", 
              "name": [
                "Moscow State University of Technology \u201cSTANKIN\u201d, Vadkovsky per. 3a, 127055, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gusarov", 
            "givenName": "A. V.", 
            "id": "sg:person.015646770741.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015646770741.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.phpro.2011.03.032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008282665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2015.02.036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008442998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.phpro.2013.03.164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008775777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-013-4863-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011340459", 
              "https://doi.org/10.1007/s00170-013-4863-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-013-4863-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011340459", 
              "https://doi.org/10.1007/s00170-013-4863-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.phpro.2010.08.086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014120524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.phpro.2014.08.118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014691266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-013-4902-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015965666", 
              "https://doi.org/10.1007/s00170-013-4902-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1108/13552541311292736", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029500564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.phpro.2014.08.117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029981285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-015-7040-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035313067", 
              "https://doi.org/10.1007/s00170-015-7040-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.phpro.2014.08.154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036718729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-005-0107-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037385135", 
              "https://doi.org/10.1007/s00170-005-0107-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-005-0107-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037385135", 
              "https://doi.org/10.1007/s00170-005-0107-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apsusc.2012.11.058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037795787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-011-3664-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042699264", 
              "https://doi.org/10.1007/s00170-011-3664-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2207/qjjws1943.51.182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045572232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2207/qjjws1943.51.182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045572232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1735040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057801079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1832740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057825553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.80.024202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060629627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.80.024202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060629627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.2194037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062077959"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-07", 
        "datePublishedReg": "2016-07-01", 
        "description": "Selective laser melting (SLM) is recognized for additive manufacturing from metals and alloys. Application of this technique to ceramic materials could also be promising. However, ceramics are brittle and often crack during this process. Silica glass is promising for obtaining crack-free ceramic parts due to its extremely low thermal expansion coefficient. The carried out experiments are elementary steps of SLM. Powder of particles <20 \u03bcm is deposited on a thick substrate to form layers of thickness from 100 to 200 \u03bcm. The obtained sandwich-like target is scanned with the laser beam of 10.6 \u03bcm wavelength. Cracking of silica glass is not observed at laser treatment. The quality of the obtained single beads is very sensitive to the laser power and the scanning velocity. This indicates that consolidation of powder requires a narrow temperature interval. A precise control of laser parameters is necessary to maintain the temperature within this range. Such control can be difficult to attain for industrial SLM machines. The theoretical analysis of consolidation kinetics shows that the best solution of this problem would be using powder with smaller particle size. The beads of consolidated powder can be superposed to form a uniform layer on the substrate. The lower is the thickness of the powder layer, the better is the quality of the consolidated layer. This is because of more uniform heating of finer layers by laser.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00170-015-8051-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043671", 
            "issn": [
              "0268-3768", 
              "1433-3015"
            ], 
            "name": "The International Journal of Advanced Manufacturing Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5-8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "85"
          }
        ], 
        "name": "Crack-free selective laser melting of silica glass: single beads and monolayers on the substrate of the same material", 
        "pagination": "1461-1469", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d6c2ed6cd58e0a529d7b86cc273f1b2ec192baa648d7b6911347044022736ad2"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00170-015-8051-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045086560"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00170-015-8051-9", 
          "https://app.dimensions.ai/details/publication/pub.1045086560"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000515.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00170-015-8051-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-015-8051-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-015-8051-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-015-8051-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-015-8051-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    144 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00170-015-8051-9 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nec49f2b7c10a42b29e9b49b488fdbf47
    4 schema:citation sg:pub.10.1007/s00170-005-0107-9
    5 sg:pub.10.1007/s00170-011-3664-0
    6 sg:pub.10.1007/s00170-013-4863-7
    7 sg:pub.10.1007/s00170-013-4902-4
    8 sg:pub.10.1007/s00170-015-7040-3
    9 https://doi.org/10.1016/j.apsusc.2012.11.058
    10 https://doi.org/10.1016/j.jmatprotec.2015.02.036
    11 https://doi.org/10.1016/j.phpro.2010.08.086
    12 https://doi.org/10.1016/j.phpro.2011.03.032
    13 https://doi.org/10.1016/j.phpro.2013.03.164
    14 https://doi.org/10.1016/j.phpro.2014.08.117
    15 https://doi.org/10.1016/j.phpro.2014.08.118
    16 https://doi.org/10.1016/j.phpro.2014.08.154
    17 https://doi.org/10.1063/1.1735040
    18 https://doi.org/10.1063/1.1832740
    19 https://doi.org/10.1103/physrevb.80.024202
    20 https://doi.org/10.1108/13552541311292736
    21 https://doi.org/10.1115/1.2194037
    22 https://doi.org/10.2207/qjjws1943.51.182
    23 schema:datePublished 2016-07
    24 schema:datePublishedReg 2016-07-01
    25 schema:description Selective laser melting (SLM) is recognized for additive manufacturing from metals and alloys. Application of this technique to ceramic materials could also be promising. However, ceramics are brittle and often crack during this process. Silica glass is promising for obtaining crack-free ceramic parts due to its extremely low thermal expansion coefficient. The carried out experiments are elementary steps of SLM. Powder of particles <20 μm is deposited on a thick substrate to form layers of thickness from 100 to 200 μm. The obtained sandwich-like target is scanned with the laser beam of 10.6 μm wavelength. Cracking of silica glass is not observed at laser treatment. The quality of the obtained single beads is very sensitive to the laser power and the scanning velocity. This indicates that consolidation of powder requires a narrow temperature interval. A precise control of laser parameters is necessary to maintain the temperature within this range. Such control can be difficult to attain for industrial SLM machines. The theoretical analysis of consolidation kinetics shows that the best solution of this problem would be using powder with smaller particle size. The beads of consolidated powder can be superposed to form a uniform layer on the substrate. The lower is the thickness of the powder layer, the better is the quality of the consolidated layer. This is because of more uniform heating of finer layers by laser.
    26 schema:genre research_article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf N23dc2eebe40145a595bbf2863ef91cd8
    30 Nef4ff30882c54cfba66c3abdead601cc
    31 sg:journal.1043671
    32 schema:name Crack-free selective laser melting of silica glass: single beads and monolayers on the substrate of the same material
    33 schema:pagination 1461-1469
    34 schema:productId N2124b43ce3fe4105a42cf6199a629d1f
    35 N2334ea3195f445f68703198eaf147bee
    36 N3d09d3cf79f44d4493cf4034d727c44f
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045086560
    38 https://doi.org/10.1007/s00170-015-8051-9
    39 schema:sdDatePublished 2019-04-10T14:10
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N570a510c19194d529fe9b7f2253b2212
    42 schema:url http://link.springer.com/10.1007%2Fs00170-015-8051-9
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N068c6651a1e84c2ba9a7d2cbb1b5bba9 rdf:first sg:person.015720264026.09
    47 rdf:rest N47a3c85ed3634d8ebddd8b3a7923f638
    48 N2124b43ce3fe4105a42cf6199a629d1f schema:name dimensions_id
    49 schema:value pub.1045086560
    50 rdf:type schema:PropertyValue
    51 N2334ea3195f445f68703198eaf147bee schema:name readcube_id
    52 schema:value d6c2ed6cd58e0a529d7b86cc273f1b2ec192baa648d7b6911347044022736ad2
    53 rdf:type schema:PropertyValue
    54 N23dc2eebe40145a595bbf2863ef91cd8 schema:volumeNumber 85
    55 rdf:type schema:PublicationVolume
    56 N3d09d3cf79f44d4493cf4034d727c44f schema:name doi
    57 schema:value 10.1007/s00170-015-8051-9
    58 rdf:type schema:PropertyValue
    59 N47a3c85ed3634d8ebddd8b3a7923f638 rdf:first sg:person.015512456231.70
    60 rdf:rest Nd96754ba347741e9b80ae7a931228a42
    61 N570a510c19194d529fe9b7f2253b2212 schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 Nd96754ba347741e9b80ae7a931228a42 rdf:first sg:person.015646770741.04
    64 rdf:rest rdf:nil
    65 Nec49f2b7c10a42b29e9b49b488fdbf47 rdf:first sg:person.011447476515.77
    66 rdf:rest N068c6651a1e84c2ba9a7d2cbb1b5bba9
    67 Nef4ff30882c54cfba66c3abdead601cc schema:issueNumber 5-8
    68 rdf:type schema:PublicationIssue
    69 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Engineering
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Materials Engineering
    74 rdf:type schema:DefinedTerm
    75 sg:journal.1043671 schema:issn 0268-3768
    76 1433-3015
    77 schema:name The International Journal of Advanced Manufacturing Technology
    78 rdf:type schema:Periodical
    79 sg:person.011447476515.77 schema:affiliation https://www.grid.ac/institutes/grid.446318.c
    80 schema:familyName Khmyrov
    81 schema:givenName R. S.
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011447476515.77
    83 rdf:type schema:Person
    84 sg:person.015512456231.70 schema:affiliation https://www.grid.ac/institutes/grid.446318.c
    85 schema:familyName Grigoriev
    86 schema:givenName S. N.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015512456231.70
    88 rdf:type schema:Person
    89 sg:person.015646770741.04 schema:affiliation https://www.grid.ac/institutes/grid.446318.c
    90 schema:familyName Gusarov
    91 schema:givenName A. V.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015646770741.04
    93 rdf:type schema:Person
    94 sg:person.015720264026.09 schema:affiliation https://www.grid.ac/institutes/grid.446318.c
    95 schema:familyName Protasov
    96 schema:givenName C. E.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015720264026.09
    98 rdf:type schema:Person
    99 sg:pub.10.1007/s00170-005-0107-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037385135
    100 https://doi.org/10.1007/s00170-005-0107-9
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/s00170-011-3664-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042699264
    103 https://doi.org/10.1007/s00170-011-3664-0
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/s00170-013-4863-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011340459
    106 https://doi.org/10.1007/s00170-013-4863-7
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/s00170-013-4902-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015965666
    109 https://doi.org/10.1007/s00170-013-4902-4
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/s00170-015-7040-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035313067
    112 https://doi.org/10.1007/s00170-015-7040-3
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.apsusc.2012.11.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037795787
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.jmatprotec.2015.02.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008442998
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.phpro.2010.08.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014120524
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.phpro.2011.03.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008282665
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.phpro.2013.03.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008775777
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/j.phpro.2014.08.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029981285
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.phpro.2014.08.118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014691266
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.phpro.2014.08.154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036718729
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1063/1.1735040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057801079
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1063/1.1832740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057825553
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1103/physrevb.80.024202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060629627
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1108/13552541311292736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029500564
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1115/1.2194037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062077959
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.2207/qjjws1943.51.182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045572232
    141 rdf:type schema:CreativeWork
    142 https://www.grid.ac/institutes/grid.446318.c schema:alternateName Moscow State Technological University
    143 schema:name Moscow State University of Technology “STANKIN”, Vadkovsky per. 3a, 127055, Moscow, Russia
    144 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...