An improved soft abrasive flow finishing method based on fluid collision theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-07

AUTHORS

Da-peng Tan, Shi-ming Ji, You-zhi Fu

ABSTRACT

Soft abrasive flow (SAF) finishing has advantages in precise processing for the workpieces with tiny scale or irregular geometric surfaces. However, current SAF finishing methods have surface quality problem caused by uneven flow field profile. To resolve the problem, a novel double-inlet SAF finishing method is proposed based on the fluid collision theory. Taking two constrained processing apparatuses (single-inlet and double-inlet) as the objectives, in combination with the shear stress transport (SST) k-ω turbulence model, the fluid mechanic models for the two apparatuses are set up, and the preliminary abrasive flow field characteristics are acquired. Referring to the collision conservation principles, the profiles of dynamical pressure and turbulence intensity in double-inlet constrained passage are obtained. The simulated results show that the flow field distribution of single-inlet passage is in a steady state and non-uniform, a periodic oscillation phenomenon appears in double-inlet passage, and it can enhance the turbulence intensity and movement randomness of abrasive flow. The processing experiments show that the proposed SAF finishing method can make the roughness on parallel flowing direction less than 50 nm and can improve the finishing uniformity and efficiency. More... »

PAGES

1261-1274

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00170-015-8044-8

DOI

http://dx.doi.org/10.1007/s00170-015-8044-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020352508


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Key Laboratory of E&M, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, 310014, Hangzhou, China", 
            "State Key Laboratory of Digital Manufacturing Equipment & Technology, 430074, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "Da-peng", 
        "id": "sg:person.012130642732.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130642732.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Key Laboratory of E&M, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Shi-ming", 
        "id": "sg:person.01046153163.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046153163.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Key Laboratory of E&M, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, 310014, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fu", 
        "givenName": "You-zhi", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.apenergy.2014.12.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000199237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.97-101.3055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002195850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-013-4985-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005653280", 
          "https://doi.org/10.1007/s00170-013-4985-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2012.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006818207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2012.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006818207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-015-7392-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009557646", 
          "https://doi.org/10.1007/s00170-015-7392-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.188.230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010365151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-011-3808-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011892638", 
          "https://doi.org/10.1007/s00170-011-3808-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2014.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018652605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-007-1095-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021161614", 
          "https://doi.org/10.1007/s00170-007-1095-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-007-1095-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021161614", 
          "https://doi.org/10.1007/s00170-007-1095-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-014-6514-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021353832", 
          "https://doi.org/10.1007/s00170-014-6514-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-010-4046-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024609296", 
          "https://doi.org/10.1007/s11431-010-4046-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-010-4046-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024609296", 
          "https://doi.org/10.1007/s11431-010-4046-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-010-4073-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027615861", 
          "https://doi.org/10.1007/s11431-010-4073-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-010-4073-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027615861", 
          "https://doi.org/10.1007/s11431-010-4073-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.precisioneng.2012.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029301988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1270-9638(03)00061-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033559374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1270-9638(03)00061-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033559374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2011.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036877139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1006-706x(09)60001-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039298208", 
          "https://doi.org/10.1016/s1006-706x(09)60001-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0890-6955(99)00114-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039345644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/712740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044495251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-014-5940-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051611732", 
          "https://doi.org/10.1007/s00170-014-5940-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2012.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052726813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-011-3621-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052942639", 
          "https://doi.org/10.1007/s00170-011-3621-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-011-3621-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052942639", 
          "https://doi.org/10.1007/s00170-011-3621-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)em.1943-7889.0000774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057630322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2012.2213559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061625762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmech.2013.2256793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061693089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.53.002012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065130350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3901/jme.2010.15.178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071552022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3901/jme.2014.07.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071554444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/kem.499.271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072084487"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07", 
    "datePublishedReg": "2016-07-01", 
    "description": "Soft abrasive flow (SAF) finishing has advantages in precise processing for the workpieces with tiny scale or irregular geometric surfaces. However, current SAF finishing methods have surface quality problem caused by uneven flow field profile. To resolve the problem, a novel double-inlet SAF finishing method is proposed based on the fluid collision theory. Taking two constrained processing apparatuses (single-inlet and double-inlet) as the objectives, in combination with the shear stress transport (SST) k-\u03c9 turbulence model, the fluid mechanic models for the two apparatuses are set up, and the preliminary abrasive flow field characteristics are acquired. Referring to the collision conservation principles, the profiles of dynamical pressure and turbulence intensity in double-inlet constrained passage are obtained. The simulated results show that the flow field distribution of single-inlet passage is in a steady state and non-uniform, a periodic oscillation phenomenon appears in double-inlet passage, and it can enhance the turbulence intensity and movement randomness of abrasive flow. The processing experiments show that the proposed SAF finishing method can make the roughness on parallel flowing direction less than 50 nm and can improve the finishing uniformity and efficiency.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00170-015-8044-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043671", 
        "issn": [
          "0268-3768", 
          "1433-3015"
        ], 
        "name": "The International Journal of Advanced Manufacturing Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "85"
      }
    ], 
    "name": "An improved soft abrasive flow finishing method based on fluid collision theory", 
    "pagination": "1261-1274", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "60f95263e2c1ccfdc02097d7ec093640f8c34af31878a913a072134b7c630ea0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00170-015-8044-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020352508"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00170-015-8044-8", 
      "https://app.dimensions.ai/details/publication/pub.1020352508"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00170-015-8044-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-015-8044-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-015-8044-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-015-8044-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-015-8044-8'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00170-015-8044-8 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N9c2e9d3dee8a420aa4089565eef7bc0f
4 schema:citation sg:pub.10.1007/s00170-007-1095-8
5 sg:pub.10.1007/s00170-011-3621-y
6 sg:pub.10.1007/s00170-011-3808-2
7 sg:pub.10.1007/s00170-013-4985-y
8 sg:pub.10.1007/s00170-014-5940-2
9 sg:pub.10.1007/s00170-014-6514-z
10 sg:pub.10.1007/s00170-015-7392-8
11 sg:pub.10.1007/s11431-010-4046-9
12 sg:pub.10.1007/s11431-010-4073-6
13 sg:pub.10.1016/s1006-706x(09)60001-7
14 https://doi.org/10.1016/j.apenergy.2014.12.026
15 https://doi.org/10.1016/j.ijmachtools.2011.11.002
16 https://doi.org/10.1016/j.ijmachtools.2012.05.012
17 https://doi.org/10.1016/j.ijmachtools.2012.07.015
18 https://doi.org/10.1016/j.precisioneng.2012.01.004
19 https://doi.org/10.1016/j.snb.2014.06.014
20 https://doi.org/10.1016/s0890-6955(99)00114-5
21 https://doi.org/10.1016/s1270-9638(03)00061-0
22 https://doi.org/10.1061/(asce)em.1943-7889.0000774
23 https://doi.org/10.1109/tie.2012.2213559
24 https://doi.org/10.1109/tmech.2013.2256793
25 https://doi.org/10.1155/2014/712740
26 https://doi.org/10.1364/ao.53.002012
27 https://doi.org/10.3901/jme.2010.15.178
28 https://doi.org/10.3901/jme.2014.07.084
29 https://doi.org/10.4028/www.scientific.net/amr.188.230
30 https://doi.org/10.4028/www.scientific.net/amr.97-101.3055
31 https://doi.org/10.4028/www.scientific.net/kem.499.271
32 schema:datePublished 2016-07
33 schema:datePublishedReg 2016-07-01
34 schema:description Soft abrasive flow (SAF) finishing has advantages in precise processing for the workpieces with tiny scale or irregular geometric surfaces. However, current SAF finishing methods have surface quality problem caused by uneven flow field profile. To resolve the problem, a novel double-inlet SAF finishing method is proposed based on the fluid collision theory. Taking two constrained processing apparatuses (single-inlet and double-inlet) as the objectives, in combination with the shear stress transport (SST) k-ω turbulence model, the fluid mechanic models for the two apparatuses are set up, and the preliminary abrasive flow field characteristics are acquired. Referring to the collision conservation principles, the profiles of dynamical pressure and turbulence intensity in double-inlet constrained passage are obtained. The simulated results show that the flow field distribution of single-inlet passage is in a steady state and non-uniform, a periodic oscillation phenomenon appears in double-inlet passage, and it can enhance the turbulence intensity and movement randomness of abrasive flow. The processing experiments show that the proposed SAF finishing method can make the roughness on parallel flowing direction less than 50 nm and can improve the finishing uniformity and efficiency.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf Nb3d6eea21a584d7ea452ae96b55d2bbe
39 Nd9c9f325face41af8a71d8796a3eaf1f
40 sg:journal.1043671
41 schema:name An improved soft abrasive flow finishing method based on fluid collision theory
42 schema:pagination 1261-1274
43 schema:productId N35c1501a513a4650b8fcf6708c665e1d
44 N3d0a2fa8cfa14f33844170427382c1bd
45 N41acd90e40f049b0b3473a9ed9bc61ba
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020352508
47 https://doi.org/10.1007/s00170-015-8044-8
48 schema:sdDatePublished 2019-04-11T00:16
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N24342c49cceb48feaf23be1f38ef890f
51 schema:url http://link.springer.com/10.1007%2Fs00170-015-8044-8
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0daab0c481974884918f9d4c0484a00c rdf:first sg:person.01046153163.59
56 rdf:rest N55fca0c2e5c44fcabb60914dfeabcb39
57 N24342c49cceb48feaf23be1f38ef890f schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N35c1501a513a4650b8fcf6708c665e1d schema:name readcube_id
60 schema:value 60f95263e2c1ccfdc02097d7ec093640f8c34af31878a913a072134b7c630ea0
61 rdf:type schema:PropertyValue
62 N3d0a2fa8cfa14f33844170427382c1bd schema:name dimensions_id
63 schema:value pub.1020352508
64 rdf:type schema:PropertyValue
65 N41acd90e40f049b0b3473a9ed9bc61ba schema:name doi
66 schema:value 10.1007/s00170-015-8044-8
67 rdf:type schema:PropertyValue
68 N55fca0c2e5c44fcabb60914dfeabcb39 rdf:first N58dad12ee97a4e40bf708f19480b744a
69 rdf:rest rdf:nil
70 N58dad12ee97a4e40bf708f19480b744a schema:affiliation https://www.grid.ac/institutes/grid.469325.f
71 schema:familyName Fu
72 schema:givenName You-zhi
73 rdf:type schema:Person
74 N9c2e9d3dee8a420aa4089565eef7bc0f rdf:first sg:person.012130642732.30
75 rdf:rest N0daab0c481974884918f9d4c0484a00c
76 Nb3d6eea21a584d7ea452ae96b55d2bbe schema:issueNumber 5-8
77 rdf:type schema:PublicationIssue
78 Nd9c9f325face41af8a71d8796a3eaf1f schema:volumeNumber 85
79 rdf:type schema:PublicationVolume
80 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
81 schema:name Engineering
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
84 schema:name Interdisciplinary Engineering
85 rdf:type schema:DefinedTerm
86 sg:journal.1043671 schema:issn 0268-3768
87 1433-3015
88 schema:name The International Journal of Advanced Manufacturing Technology
89 rdf:type schema:Periodical
90 sg:person.01046153163.59 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
91 schema:familyName Ji
92 schema:givenName Shi-ming
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046153163.59
94 rdf:type schema:Person
95 sg:person.012130642732.30 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
96 schema:familyName Tan
97 schema:givenName Da-peng
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130642732.30
99 rdf:type schema:Person
100 sg:pub.10.1007/s00170-007-1095-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021161614
101 https://doi.org/10.1007/s00170-007-1095-8
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s00170-011-3621-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052942639
104 https://doi.org/10.1007/s00170-011-3621-y
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s00170-011-3808-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011892638
107 https://doi.org/10.1007/s00170-011-3808-2
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s00170-013-4985-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1005653280
110 https://doi.org/10.1007/s00170-013-4985-y
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s00170-014-5940-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051611732
113 https://doi.org/10.1007/s00170-014-5940-2
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s00170-014-6514-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1021353832
116 https://doi.org/10.1007/s00170-014-6514-z
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s00170-015-7392-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009557646
119 https://doi.org/10.1007/s00170-015-7392-8
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s11431-010-4046-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024609296
122 https://doi.org/10.1007/s11431-010-4046-9
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s11431-010-4073-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027615861
125 https://doi.org/10.1007/s11431-010-4073-6
126 rdf:type schema:CreativeWork
127 sg:pub.10.1016/s1006-706x(09)60001-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039298208
128 https://doi.org/10.1016/s1006-706x(09)60001-7
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.apenergy.2014.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000199237
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.ijmachtools.2011.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036877139
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.ijmachtools.2012.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052726813
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.ijmachtools.2012.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006818207
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.precisioneng.2012.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029301988
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.snb.2014.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018652605
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0890-6955(99)00114-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039345644
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s1270-9638(03)00061-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033559374
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1061/(asce)em.1943-7889.0000774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057630322
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tie.2012.2213559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061625762
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tmech.2013.2256793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061693089
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1155/2014/712740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044495251
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1364/ao.53.002012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065130350
155 rdf:type schema:CreativeWork
156 https://doi.org/10.3901/jme.2010.15.178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071552022
157 rdf:type schema:CreativeWork
158 https://doi.org/10.3901/jme.2014.07.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071554444
159 rdf:type schema:CreativeWork
160 https://doi.org/10.4028/www.scientific.net/amr.188.230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010365151
161 rdf:type schema:CreativeWork
162 https://doi.org/10.4028/www.scientific.net/amr.97-101.3055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002195850
163 rdf:type schema:CreativeWork
164 https://doi.org/10.4028/www.scientific.net/kem.499.271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072084487
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.469325.f schema:alternateName Zhejiang University of Technology
167 schema:name Key Laboratory of E&M, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, 310014, Hangzhou, China
168 State Key Laboratory of Digital Manufacturing Equipment & Technology, 430074, Wuhan, China
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...