A new approach to the design and optimisation of support structures in additive manufacturing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-06

AUTHORS

G. Strano, L. Hao, R. M. Everson, K. E. Evans

ABSTRACT

Support structures are required in several additive manufacturing (AM) processes to sustain overhanging parts, in particular for the production of metal components. Supports are typically hollow or cellular structures to be removed after metallic AM, thus they represent a considerable waste in terms of material, energy and time employed for their construction and removal. This study presents a new approach to the design of support structures that optimise the part built orientation and the support cellular structure. This approach applies a new optimisation algorithm to use pure mathematical 3D implicit functions for the design and generation of the cellular support structures including graded supports. The implicit function approach for support structure design has been proved to be very versatile, as it allows geometries to be simply designed by pure mathematical expressions. This way, different cellular structures can be easily defined and optimised, in particular to have graded structures providing more robust support where the object’s weight concentrate, and less support elsewhere. Evaluation of support optimisation for a complex shape geometry revealed that the new approach presented can achieve significant materials savings, thus increasing the sustainability and efficiency of metallic AM. More... »

PAGES

1247-1254

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00170-012-4403-x

DOI

http://dx.doi.org/10.1007/s00170-012-4403-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005548235


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Exeter", 
          "id": "https://www.grid.ac/institutes/grid.8391.3", 
          "name": [
            "College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Strano", 
        "givenName": "G.", 
        "id": "sg:person.013352752343.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013352752343.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Exeter", 
          "id": "https://www.grid.ac/institutes/grid.8391.3", 
          "name": [
            "College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hao", 
        "givenName": "L.", 
        "id": "sg:person.013425604427.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013425604427.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Exeter", 
          "id": "https://www.grid.ac/institutes/grid.8391.3", 
          "name": [
            "College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Everson", 
        "givenName": "R. M.", 
        "id": "sg:person.016170300365.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016170300365.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Exeter", 
          "id": "https://www.grid.ac/institutes/grid.8391.3", 
          "name": [
            "College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Evans", 
        "givenName": "K. E.", 
        "id": "sg:person.013733773535.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013733773535.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00124677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010343362", 
          "https://doi.org/10.1007/bf00124677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00124677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010343362", 
          "https://doi.org/10.1007/bf00124677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-50665-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029799451", 
          "https://doi.org/10.1007/978-3-642-50665-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-50665-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029799451", 
          "https://doi.org/10.1007/978-3-642-50665-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0960313195000189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063012432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/detc2005-85366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092790956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/smi.2010.19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094178133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b11341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095904927"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-06", 
    "datePublishedReg": "2013-06-01", 
    "description": "Support structures are required in several additive manufacturing (AM) processes to sustain overhanging parts, in particular for the production of metal components. Supports are typically hollow or cellular structures to be removed after metallic AM, thus they represent a considerable waste in terms of material, energy and time employed for their construction and removal. This study presents a new approach to the design of support structures that optimise the part built orientation and the support cellular structure. This approach applies a new optimisation algorithm to use pure mathematical 3D implicit functions for the design and generation of the cellular support structures including graded supports. The implicit function approach for support structure design has been proved to be very versatile, as it allows geometries to be simply designed by pure mathematical expressions. This way, different cellular structures can be easily defined and optimised, in particular to have graded structures providing more robust support where the object\u2019s weight concentrate, and less support elsewhere. Evaluation of support optimisation for a complex shape geometry revealed that the new approach presented can achieve significant materials savings, thus increasing the sustainability and efficiency of metallic AM.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00170-012-4403-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043671", 
        "issn": [
          "0268-3768", 
          "1433-3015"
        ], 
        "name": "The International Journal of Advanced Manufacturing Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9-12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "66"
      }
    ], 
    "name": "A new approach to the design and optimisation of support structures in additive manufacturing", 
    "pagination": "1247-1254", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1a6f448c378068f5b5fa0600e256fc8517c7f034e814dca376bc3f2939acafc8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00170-012-4403-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005548235"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00170-012-4403-x", 
      "https://app.dimensions.ai/details/publication/pub.1005548235"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000486.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00170-012-4403-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-012-4403-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-012-4403-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-012-4403-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-012-4403-x'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00170-012-4403-x schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N7d1f50acd2424762a086a132707eb1e5
4 schema:citation sg:pub.10.1007/978-3-642-50665-9
5 sg:pub.10.1007/bf00124677
6 https://doi.org/10.1109/smi.2010.19
7 https://doi.org/10.1115/detc2005-85366
8 https://doi.org/10.1142/s0960313195000189
9 https://doi.org/10.1201/b11341
10 schema:datePublished 2013-06
11 schema:datePublishedReg 2013-06-01
12 schema:description Support structures are required in several additive manufacturing (AM) processes to sustain overhanging parts, in particular for the production of metal components. Supports are typically hollow or cellular structures to be removed after metallic AM, thus they represent a considerable waste in terms of material, energy and time employed for their construction and removal. This study presents a new approach to the design of support structures that optimise the part built orientation and the support cellular structure. This approach applies a new optimisation algorithm to use pure mathematical 3D implicit functions for the design and generation of the cellular support structures including graded supports. The implicit function approach for support structure design has been proved to be very versatile, as it allows geometries to be simply designed by pure mathematical expressions. This way, different cellular structures can be easily defined and optimised, in particular to have graded structures providing more robust support where the object’s weight concentrate, and less support elsewhere. Evaluation of support optimisation for a complex shape geometry revealed that the new approach presented can achieve significant materials savings, thus increasing the sustainability and efficiency of metallic AM.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N95f2e2806c0d42b9a71022239aaea1fb
17 N998cc2ef55d746fca2037f4fb12789df
18 sg:journal.1043671
19 schema:name A new approach to the design and optimisation of support structures in additive manufacturing
20 schema:pagination 1247-1254
21 schema:productId N051c87f39ed041c3906e74b50b62718d
22 N3cc907b2483c4835b5ae38bdd8fe34e9
23 Nc29053453b8b4faba05c5099d095e311
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005548235
25 https://doi.org/10.1007/s00170-012-4403-x
26 schema:sdDatePublished 2019-04-10T21:31
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N6161a94132b5475c9a13a7cd9c4e9269
29 schema:url http://link.springer.com/10.1007/s00170-012-4403-x
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N051c87f39ed041c3906e74b50b62718d schema:name readcube_id
34 schema:value 1a6f448c378068f5b5fa0600e256fc8517c7f034e814dca376bc3f2939acafc8
35 rdf:type schema:PropertyValue
36 N0a0670dfba9b454a809e83d620f8dc95 rdf:first sg:person.013425604427.01
37 rdf:rest N8f94fe191ffe4009a5c4ea41fe909fa9
38 N1344e4cee17c4302aca426e260090945 rdf:first sg:person.013733773535.99
39 rdf:rest rdf:nil
40 N3cc907b2483c4835b5ae38bdd8fe34e9 schema:name doi
41 schema:value 10.1007/s00170-012-4403-x
42 rdf:type schema:PropertyValue
43 N6161a94132b5475c9a13a7cd9c4e9269 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N7d1f50acd2424762a086a132707eb1e5 rdf:first sg:person.013352752343.54
46 rdf:rest N0a0670dfba9b454a809e83d620f8dc95
47 N8f94fe191ffe4009a5c4ea41fe909fa9 rdf:first sg:person.016170300365.12
48 rdf:rest N1344e4cee17c4302aca426e260090945
49 N95f2e2806c0d42b9a71022239aaea1fb schema:issueNumber 9-12
50 rdf:type schema:PublicationIssue
51 N998cc2ef55d746fca2037f4fb12789df schema:volumeNumber 66
52 rdf:type schema:PublicationVolume
53 Nc29053453b8b4faba05c5099d095e311 schema:name dimensions_id
54 schema:value pub.1005548235
55 rdf:type schema:PropertyValue
56 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
57 schema:name Engineering
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
60 schema:name Materials Engineering
61 rdf:type schema:DefinedTerm
62 sg:journal.1043671 schema:issn 0268-3768
63 1433-3015
64 schema:name The International Journal of Advanced Manufacturing Technology
65 rdf:type schema:Periodical
66 sg:person.013352752343.54 schema:affiliation https://www.grid.ac/institutes/grid.8391.3
67 schema:familyName Strano
68 schema:givenName G.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013352752343.54
70 rdf:type schema:Person
71 sg:person.013425604427.01 schema:affiliation https://www.grid.ac/institutes/grid.8391.3
72 schema:familyName Hao
73 schema:givenName L.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013425604427.01
75 rdf:type schema:Person
76 sg:person.013733773535.99 schema:affiliation https://www.grid.ac/institutes/grid.8391.3
77 schema:familyName Evans
78 schema:givenName K. E.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013733773535.99
80 rdf:type schema:Person
81 sg:person.016170300365.12 schema:affiliation https://www.grid.ac/institutes/grid.8391.3
82 schema:familyName Everson
83 schema:givenName R. M.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016170300365.12
85 rdf:type schema:Person
86 sg:pub.10.1007/978-3-642-50665-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029799451
87 https://doi.org/10.1007/978-3-642-50665-9
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf00124677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010343362
90 https://doi.org/10.1007/bf00124677
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1109/smi.2010.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094178133
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1115/detc2005-85366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092790956
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1142/s0960313195000189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063012432
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1201/b11341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095904927
99 rdf:type schema:CreativeWork
100 https://www.grid.ac/institutes/grid.8391.3 schema:alternateName University of Exeter
101 schema:name College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, Exeter, UK
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...