A new approach to the design and optimisation of support structures in additive manufacturing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-06

AUTHORS

G. Strano, L. Hao, R. M. Everson, K. E. Evans

ABSTRACT

Support structures are required in several additive manufacturing (AM) processes to sustain overhanging parts, in particular for the production of metal components. Supports are typically hollow or cellular structures to be removed after metallic AM, thus they represent a considerable waste in terms of material, energy and time employed for their construction and removal. This study presents a new approach to the design of support structures that optimise the part built orientation and the support cellular structure. This approach applies a new optimisation algorithm to use pure mathematical 3D implicit functions for the design and generation of the cellular support structures including graded supports. The implicit function approach for support structure design has been proved to be very versatile, as it allows geometries to be simply designed by pure mathematical expressions. This way, different cellular structures can be easily defined and optimised, in particular to have graded structures providing more robust support where the object’s weight concentrate, and less support elsewhere. Evaluation of support optimisation for a complex shape geometry revealed that the new approach presented can achieve significant materials savings, thus increasing the sustainability and efficiency of metallic AM. More... »

PAGES

1247-1254

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00170-012-4403-x

DOI

http://dx.doi.org/10.1007/s00170-012-4403-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005548235


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Exeter", 
          "id": "https://www.grid.ac/institutes/grid.8391.3", 
          "name": [
            "College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Strano", 
        "givenName": "G.", 
        "id": "sg:person.013352752343.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013352752343.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Exeter", 
          "id": "https://www.grid.ac/institutes/grid.8391.3", 
          "name": [
            "College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hao", 
        "givenName": "L.", 
        "id": "sg:person.013425604427.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013425604427.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Exeter", 
          "id": "https://www.grid.ac/institutes/grid.8391.3", 
          "name": [
            "College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Everson", 
        "givenName": "R. M.", 
        "id": "sg:person.016170300365.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016170300365.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Exeter", 
          "id": "https://www.grid.ac/institutes/grid.8391.3", 
          "name": [
            "College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Evans", 
        "givenName": "K. E.", 
        "id": "sg:person.013733773535.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013733773535.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00124677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010343362", 
          "https://doi.org/10.1007/bf00124677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00124677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010343362", 
          "https://doi.org/10.1007/bf00124677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-50665-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029799451", 
          "https://doi.org/10.1007/978-3-642-50665-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-50665-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029799451", 
          "https://doi.org/10.1007/978-3-642-50665-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0960313195000189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063012432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/detc2005-85366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092790956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/smi.2010.19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094178133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b11341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095904927"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-06", 
    "datePublishedReg": "2013-06-01", 
    "description": "Support structures are required in several additive manufacturing (AM) processes to sustain overhanging parts, in particular for the production of metal components. Supports are typically hollow or cellular structures to be removed after metallic AM, thus they represent a considerable waste in terms of material, energy and time employed for their construction and removal. This study presents a new approach to the design of support structures that optimise the part built orientation and the support cellular structure. This approach applies a new optimisation algorithm to use pure mathematical 3D implicit functions for the design and generation of the cellular support structures including graded supports. The implicit function approach for support structure design has been proved to be very versatile, as it allows geometries to be simply designed by pure mathematical expressions. This way, different cellular structures can be easily defined and optimised, in particular to have graded structures providing more robust support where the object\u2019s weight concentrate, and less support elsewhere. Evaluation of support optimisation for a complex shape geometry revealed that the new approach presented can achieve significant materials savings, thus increasing the sustainability and efficiency of metallic AM.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00170-012-4403-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043671", 
        "issn": [
          "0268-3768", 
          "1433-3015"
        ], 
        "name": "The International Journal of Advanced Manufacturing Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9-12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "66"
      }
    ], 
    "name": "A new approach to the design and optimisation of support structures in additive manufacturing", 
    "pagination": "1247-1254", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1a6f448c378068f5b5fa0600e256fc8517c7f034e814dca376bc3f2939acafc8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00170-012-4403-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005548235"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00170-012-4403-x", 
      "https://app.dimensions.ai/details/publication/pub.1005548235"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000486.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00170-012-4403-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-012-4403-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-012-4403-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-012-4403-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-012-4403-x'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00170-012-4403-x schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N04818e306b004a95b3b065824cd3f7c1
4 schema:citation sg:pub.10.1007/978-3-642-50665-9
5 sg:pub.10.1007/bf00124677
6 https://doi.org/10.1109/smi.2010.19
7 https://doi.org/10.1115/detc2005-85366
8 https://doi.org/10.1142/s0960313195000189
9 https://doi.org/10.1201/b11341
10 schema:datePublished 2013-06
11 schema:datePublishedReg 2013-06-01
12 schema:description Support structures are required in several additive manufacturing (AM) processes to sustain overhanging parts, in particular for the production of metal components. Supports are typically hollow or cellular structures to be removed after metallic AM, thus they represent a considerable waste in terms of material, energy and time employed for their construction and removal. This study presents a new approach to the design of support structures that optimise the part built orientation and the support cellular structure. This approach applies a new optimisation algorithm to use pure mathematical 3D implicit functions for the design and generation of the cellular support structures including graded supports. The implicit function approach for support structure design has been proved to be very versatile, as it allows geometries to be simply designed by pure mathematical expressions. This way, different cellular structures can be easily defined and optimised, in particular to have graded structures providing more robust support where the object’s weight concentrate, and less support elsewhere. Evaluation of support optimisation for a complex shape geometry revealed that the new approach presented can achieve significant materials savings, thus increasing the sustainability and efficiency of metallic AM.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N0af23688f97c44649c66c1f492b4c91d
17 Nde5a4555c2fe404e8111d9115343a23e
18 sg:journal.1043671
19 schema:name A new approach to the design and optimisation of support structures in additive manufacturing
20 schema:pagination 1247-1254
21 schema:productId N0d01c154be804d3481d66aa86d815d74
22 N123f7c16d70641d8901961354c228fa2
23 N3f4e775d5d1e4b4f8249def23ecd6ca3
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005548235
25 https://doi.org/10.1007/s00170-012-4403-x
26 schema:sdDatePublished 2019-04-10T21:31
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N52ace90908dd4373b56069a83f4bd17a
29 schema:url http://link.springer.com/10.1007/s00170-012-4403-x
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N04818e306b004a95b3b065824cd3f7c1 rdf:first sg:person.013352752343.54
34 rdf:rest N076530e1d99c44dea88221e37d9a8345
35 N076530e1d99c44dea88221e37d9a8345 rdf:first sg:person.013425604427.01
36 rdf:rest Na32dd6cd3a6244b99c7daa6a19ec88ec
37 N0af23688f97c44649c66c1f492b4c91d schema:volumeNumber 66
38 rdf:type schema:PublicationVolume
39 N0d01c154be804d3481d66aa86d815d74 schema:name readcube_id
40 schema:value 1a6f448c378068f5b5fa0600e256fc8517c7f034e814dca376bc3f2939acafc8
41 rdf:type schema:PropertyValue
42 N123f7c16d70641d8901961354c228fa2 schema:name dimensions_id
43 schema:value pub.1005548235
44 rdf:type schema:PropertyValue
45 N2a0beced182a4652a8380e0bfe116467 rdf:first sg:person.013733773535.99
46 rdf:rest rdf:nil
47 N3f4e775d5d1e4b4f8249def23ecd6ca3 schema:name doi
48 schema:value 10.1007/s00170-012-4403-x
49 rdf:type schema:PropertyValue
50 N52ace90908dd4373b56069a83f4bd17a schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Na32dd6cd3a6244b99c7daa6a19ec88ec rdf:first sg:person.016170300365.12
53 rdf:rest N2a0beced182a4652a8380e0bfe116467
54 Nde5a4555c2fe404e8111d9115343a23e schema:issueNumber 9-12
55 rdf:type schema:PublicationIssue
56 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
57 schema:name Engineering
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
60 schema:name Materials Engineering
61 rdf:type schema:DefinedTerm
62 sg:journal.1043671 schema:issn 0268-3768
63 1433-3015
64 schema:name The International Journal of Advanced Manufacturing Technology
65 rdf:type schema:Periodical
66 sg:person.013352752343.54 schema:affiliation https://www.grid.ac/institutes/grid.8391.3
67 schema:familyName Strano
68 schema:givenName G.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013352752343.54
70 rdf:type schema:Person
71 sg:person.013425604427.01 schema:affiliation https://www.grid.ac/institutes/grid.8391.3
72 schema:familyName Hao
73 schema:givenName L.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013425604427.01
75 rdf:type schema:Person
76 sg:person.013733773535.99 schema:affiliation https://www.grid.ac/institutes/grid.8391.3
77 schema:familyName Evans
78 schema:givenName K. E.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013733773535.99
80 rdf:type schema:Person
81 sg:person.016170300365.12 schema:affiliation https://www.grid.ac/institutes/grid.8391.3
82 schema:familyName Everson
83 schema:givenName R. M.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016170300365.12
85 rdf:type schema:Person
86 sg:pub.10.1007/978-3-642-50665-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029799451
87 https://doi.org/10.1007/978-3-642-50665-9
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf00124677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010343362
90 https://doi.org/10.1007/bf00124677
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1109/smi.2010.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094178133
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1115/detc2005-85366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092790956
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1142/s0960313195000189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063012432
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1201/b11341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095904927
99 rdf:type schema:CreativeWork
100 https://www.grid.ac/institutes/grid.8391.3 schema:alternateName University of Exeter
101 schema:name College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, Exeter, UK
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...