Softness abrasive flow method oriented to tiny scale mold structural surface View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-08

AUTHORS

Chen Li, Shi-Ming Ji, Da-Peng Tan

ABSTRACT

Tiny scale mold structural surface finishing is of high difficulty. In allusion to the problem, a new no-tool precision finishing method based on solid–liquid two-phase softness abrasive flow (SAF) is brought forward. By setting restrained component for the structural surface machined, the restrained flow passage is constructed. Using the wall effect of SAF, no-tool precision finishing for tiny scale structural surface can be realized. According to the Nikuradse’s experimental principles, the motion regulars of SAF are studied, and the friction coefficient formulas suited for SAF finishing are obtained. Taking U-shaped restrained flow passage as instance, standard k-ε model and Euler multiple-phase model are used to describe the SAF flow field, and the kinetic model of SAF is established based on discrete phase model. Then, the variation trends of SAF turbulent parameters and flow passage pressure distribution with different inlet velocities are acquired by semi-implicit method for pressure-linked equations consistent algorithm. Numerical simulation results derived that pressure attenuation of solid phase in flow passage is inversely proportional to inlet velocity, and the motion trails are disordered and stochastic, which are the sufficient conditions of SAF finishing. By analyzing pressure distribution and turbulent characteristics of SAF, the best finishing area in restrained flow passage is gained. Observational experiment of particles motion had been carried out; experimental results showed particles’ motion satisfied requirements of SAF finishing, and feasibility of SAF could be proved theoretically. SAF experimental platform oriented to module structural surface finishing is constructed, and the nano-level finishing can be realized. Experiment results show that SAF method can increase mold structural surface precision more than ten times, and the roughness machined in Ra value is less than 62 nm. More... »

PAGES

975-987

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00170-011-3621-y

DOI

http://dx.doi.org/10.1007/s00170-011-3621-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052942639


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Zhejiang Universtiy of Technology, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Chen", 
        "id": "sg:person.010114452033.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010114452033.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Zhejiang Universtiy of Technology, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Shi-Ming", 
        "id": "sg:person.01046153163.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046153163.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Zhejiang Universtiy of Technology, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "Da-Peng", 
        "id": "sg:person.012130642732.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130642732.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0007-8506(07)60690-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002032014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmachtools.2005.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003088708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-004-2334-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007910839", 
          "https://doi.org/10.1007/s00170-004-2334-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-004-2334-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007910839", 
          "https://doi.org/10.1007/s00170-004-2334-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-008-1637-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016613783", 
          "https://doi.org/10.1007/s00170-008-1637-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-008-1637-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016613783", 
          "https://doi.org/10.1007/s00170-008-1637-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-008-1875-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020114823", 
          "https://doi.org/10.1007/s00170-008-1875-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-008-1875-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020114823", 
          "https://doi.org/10.1007/s00170-008-1875-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-007-1095-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021161614", 
          "https://doi.org/10.1007/s00170-007-1095-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-007-1095-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021161614", 
          "https://doi.org/10.1007/s00170-007-1095-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-010-4046-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024609296", 
          "https://doi.org/10.1007/s11431-010-4046-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-010-4046-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024609296", 
          "https://doi.org/10.1007/s11431-010-4046-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.precisioneng.2005.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032482751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0890-6955(99)00114-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039345644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-3785(07)80058-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042596886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-006-0423-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051092815", 
          "https://doi.org/10.1007/s00170-006-0423-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-006-0423-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051092815", 
          "https://doi.org/10.1007/s00170-006-0423-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tim.2008.2009202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061637546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmech.2009.2020979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061692499"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-08", 
    "datePublishedReg": "2012-08-01", 
    "description": "Tiny scale mold structural surface finishing is of high difficulty. In allusion to the problem, a new no-tool precision finishing method based on solid\u2013liquid two-phase softness abrasive flow (SAF) is brought forward. By setting restrained component for the structural surface machined, the restrained flow passage is constructed. Using the wall effect of SAF, no-tool precision finishing for tiny scale structural surface can be realized. According to the Nikuradse\u2019s experimental principles, the motion regulars of SAF are studied, and the friction coefficient formulas suited for SAF finishing are obtained. Taking U-shaped restrained flow passage as instance, standard k-\u03b5 model and Euler multiple-phase model are used to describe the SAF flow field, and the kinetic model of SAF is established based on discrete phase model. Then, the variation trends of SAF turbulent parameters and flow passage pressure distribution with different inlet velocities are acquired by semi-implicit method for pressure-linked equations consistent algorithm. Numerical simulation results derived that pressure attenuation of solid phase in flow passage is inversely proportional to inlet velocity, and the motion trails are disordered and stochastic, which are the sufficient conditions of SAF finishing. By analyzing pressure distribution and turbulent characteristics of SAF, the best finishing area in restrained flow passage is gained. Observational experiment of particles motion had been carried out; experimental results showed particles\u2019 motion satisfied requirements of SAF finishing, and feasibility of SAF could be proved theoretically. SAF experimental platform oriented to module structural surface finishing is constructed, and the nano-level finishing can be realized. Experiment results show that SAF method can increase mold structural surface precision more than ten times, and the roughness machined in Ra value is less than 62 nm.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00170-011-3621-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4905079", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4993894", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043671", 
        "issn": [
          "0268-3768", 
          "1433-3015"
        ], 
        "name": "The International Journal of Advanced Manufacturing Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9-12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "61"
      }
    ], 
    "name": "Softness abrasive flow method oriented to tiny scale mold structural surface", 
    "pagination": "975-987", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fc2e2b3d099f78e3163027de03a88194c3351cbddf9bf3be20ce07436eed8953"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00170-011-3621-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052942639"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00170-011-3621-y", 
      "https://app.dimensions.ai/details/publication/pub.1052942639"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45376_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00170-011-3621-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-011-3621-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-011-3621-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-011-3621-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-011-3621-y'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00170-011-3621-y schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N97a05833fb7649a681f525463ca662be
4 schema:citation sg:pub.10.1007/s00170-004-2334-x
5 sg:pub.10.1007/s00170-006-0423-8
6 sg:pub.10.1007/s00170-007-1095-8
7 sg:pub.10.1007/s00170-008-1637-8
8 sg:pub.10.1007/s00170-008-1875-9
9 sg:pub.10.1007/s11431-010-4046-9
10 https://doi.org/10.1016/j.ijmachtools.2005.03.006
11 https://doi.org/10.1016/j.precisioneng.2005.11.012
12 https://doi.org/10.1016/s0007-8506(07)60690-8
13 https://doi.org/10.1016/s0167-3785(07)80058-3
14 https://doi.org/10.1016/s0890-6955(99)00114-5
15 https://doi.org/10.1109/tim.2008.2009202
16 https://doi.org/10.1109/tmech.2009.2020979
17 schema:datePublished 2012-08
18 schema:datePublishedReg 2012-08-01
19 schema:description Tiny scale mold structural surface finishing is of high difficulty. In allusion to the problem, a new no-tool precision finishing method based on solid–liquid two-phase softness abrasive flow (SAF) is brought forward. By setting restrained component for the structural surface machined, the restrained flow passage is constructed. Using the wall effect of SAF, no-tool precision finishing for tiny scale structural surface can be realized. According to the Nikuradse’s experimental principles, the motion regulars of SAF are studied, and the friction coefficient formulas suited for SAF finishing are obtained. Taking U-shaped restrained flow passage as instance, standard k-ε model and Euler multiple-phase model are used to describe the SAF flow field, and the kinetic model of SAF is established based on discrete phase model. Then, the variation trends of SAF turbulent parameters and flow passage pressure distribution with different inlet velocities are acquired by semi-implicit method for pressure-linked equations consistent algorithm. Numerical simulation results derived that pressure attenuation of solid phase in flow passage is inversely proportional to inlet velocity, and the motion trails are disordered and stochastic, which are the sufficient conditions of SAF finishing. By analyzing pressure distribution and turbulent characteristics of SAF, the best finishing area in restrained flow passage is gained. Observational experiment of particles motion had been carried out; experimental results showed particles’ motion satisfied requirements of SAF finishing, and feasibility of SAF could be proved theoretically. SAF experimental platform oriented to module structural surface finishing is constructed, and the nano-level finishing can be realized. Experiment results show that SAF method can increase mold structural surface precision more than ten times, and the roughness machined in Ra value is less than 62 nm.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N43d9737566b942f4ae7c892366a467c7
24 N6ca150fbef464550866a91134316aca7
25 sg:journal.1043671
26 schema:name Softness abrasive flow method oriented to tiny scale mold structural surface
27 schema:pagination 975-987
28 schema:productId N80f736fb69154399a174bdc5f1c87af0
29 N878a2aef218f467ba232dd810bf3104d
30 Na5d220b7a88a45b2a466089dd6f5cad3
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052942639
32 https://doi.org/10.1007/s00170-011-3621-y
33 schema:sdDatePublished 2019-04-11T11:14
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N68c31a9492db465d8e08b395fe152022
36 schema:url http://link.springer.com/10.1007%2Fs00170-011-3621-y
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N212ed0b8834141248496ce66f0684d7c rdf:first sg:person.01046153163.59
41 rdf:rest Nfcda909f9fc0463d855b1ea85560d416
42 N43d9737566b942f4ae7c892366a467c7 schema:volumeNumber 61
43 rdf:type schema:PublicationVolume
44 N68c31a9492db465d8e08b395fe152022 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N6ca150fbef464550866a91134316aca7 schema:issueNumber 9-12
47 rdf:type schema:PublicationIssue
48 N80f736fb69154399a174bdc5f1c87af0 schema:name readcube_id
49 schema:value fc2e2b3d099f78e3163027de03a88194c3351cbddf9bf3be20ce07436eed8953
50 rdf:type schema:PropertyValue
51 N878a2aef218f467ba232dd810bf3104d schema:name doi
52 schema:value 10.1007/s00170-011-3621-y
53 rdf:type schema:PropertyValue
54 N97a05833fb7649a681f525463ca662be rdf:first sg:person.010114452033.95
55 rdf:rest N212ed0b8834141248496ce66f0684d7c
56 Na5d220b7a88a45b2a466089dd6f5cad3 schema:name dimensions_id
57 schema:value pub.1052942639
58 rdf:type schema:PropertyValue
59 Nfcda909f9fc0463d855b1ea85560d416 rdf:first sg:person.012130642732.30
60 rdf:rest rdf:nil
61 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
62 schema:name Engineering
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
65 schema:name Interdisciplinary Engineering
66 rdf:type schema:DefinedTerm
67 sg:grant.4905079 http://pending.schema.org/fundedItem sg:pub.10.1007/s00170-011-3621-y
68 rdf:type schema:MonetaryGrant
69 sg:grant.4993894 http://pending.schema.org/fundedItem sg:pub.10.1007/s00170-011-3621-y
70 rdf:type schema:MonetaryGrant
71 sg:journal.1043671 schema:issn 0268-3768
72 1433-3015
73 schema:name The International Journal of Advanced Manufacturing Technology
74 rdf:type schema:Periodical
75 sg:person.010114452033.95 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
76 schema:familyName Li
77 schema:givenName Chen
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010114452033.95
79 rdf:type schema:Person
80 sg:person.01046153163.59 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
81 schema:familyName Ji
82 schema:givenName Shi-Ming
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046153163.59
84 rdf:type schema:Person
85 sg:person.012130642732.30 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
86 schema:familyName Tan
87 schema:givenName Da-Peng
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130642732.30
89 rdf:type schema:Person
90 sg:pub.10.1007/s00170-004-2334-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007910839
91 https://doi.org/10.1007/s00170-004-2334-x
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s00170-006-0423-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051092815
94 https://doi.org/10.1007/s00170-006-0423-8
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s00170-007-1095-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021161614
97 https://doi.org/10.1007/s00170-007-1095-8
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s00170-008-1637-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016613783
100 https://doi.org/10.1007/s00170-008-1637-8
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s00170-008-1875-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020114823
103 https://doi.org/10.1007/s00170-008-1875-9
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s11431-010-4046-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024609296
106 https://doi.org/10.1007/s11431-010-4046-9
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.ijmachtools.2005.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003088708
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.precisioneng.2005.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032482751
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/s0007-8506(07)60690-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002032014
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s0167-3785(07)80058-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042596886
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/s0890-6955(99)00114-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039345644
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/tim.2008.2009202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061637546
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/tmech.2009.2020979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061692499
121 rdf:type schema:CreativeWork
122 https://www.grid.ac/institutes/grid.469325.f schema:alternateName Zhejiang University of Technology
123 schema:name Zhejiang Universtiy of Technology, Hangzhou, China
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...