Softness abrasive flow method oriented to tiny scale mold structural surface View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-08

AUTHORS

Chen Li, Shi-Ming Ji, Da-Peng Tan

ABSTRACT

Tiny scale mold structural surface finishing is of high difficulty. In allusion to the problem, a new no-tool precision finishing method based on solid–liquid two-phase softness abrasive flow (SAF) is brought forward. By setting restrained component for the structural surface machined, the restrained flow passage is constructed. Using the wall effect of SAF, no-tool precision finishing for tiny scale structural surface can be realized. According to the Nikuradse’s experimental principles, the motion regulars of SAF are studied, and the friction coefficient formulas suited for SAF finishing are obtained. Taking U-shaped restrained flow passage as instance, standard k-ε model and Euler multiple-phase model are used to describe the SAF flow field, and the kinetic model of SAF is established based on discrete phase model. Then, the variation trends of SAF turbulent parameters and flow passage pressure distribution with different inlet velocities are acquired by semi-implicit method for pressure-linked equations consistent algorithm. Numerical simulation results derived that pressure attenuation of solid phase in flow passage is inversely proportional to inlet velocity, and the motion trails are disordered and stochastic, which are the sufficient conditions of SAF finishing. By analyzing pressure distribution and turbulent characteristics of SAF, the best finishing area in restrained flow passage is gained. Observational experiment of particles motion had been carried out; experimental results showed particles’ motion satisfied requirements of SAF finishing, and feasibility of SAF could be proved theoretically. SAF experimental platform oriented to module structural surface finishing is constructed, and the nano-level finishing can be realized. Experiment results show that SAF method can increase mold structural surface precision more than ten times, and the roughness machined in Ra value is less than 62 nm. More... »

PAGES

975-987

References to SciGraph publications

  • 2007-05. Self-modulating abrasive medium and its application to abrasive flow machining for finishing micro channel surfaces in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2009-06. Rheological characterization of magnetorheological polishing fluid for MRAFF in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2008-08. Analysis of magnetorheological abrasive flow finishing (MRAFF) process in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2010-10. Analytical method for softness abrasive flow field based on discrete phase model in SCIENCE CHINA TECHNOLOGICAL SCIENCES
  • 2009-01-22. CFD simulation for two-phase mixing in 2D fluidized bed in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2005-09. Numerical simulation of fluid flow and heat transfer in a plasma spray gun in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00170-011-3621-y

    DOI

    http://dx.doi.org/10.1007/s00170-011-3621-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1052942639


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Zhejiang University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "Zhejiang Universtiy of Technology, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Chen", 
            "id": "sg:person.010114452033.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010114452033.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhejiang University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "Zhejiang Universtiy of Technology, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ji", 
            "givenName": "Shi-Ming", 
            "id": "sg:person.01046153163.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046153163.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhejiang University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "Zhejiang Universtiy of Technology, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tan", 
            "givenName": "Da-Peng", 
            "id": "sg:person.012130642732.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130642732.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0007-8506(07)60690-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002032014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijmachtools.2005.03.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003088708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-004-2334-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007910839", 
              "https://doi.org/10.1007/s00170-004-2334-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-004-2334-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007910839", 
              "https://doi.org/10.1007/s00170-004-2334-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-008-1637-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016613783", 
              "https://doi.org/10.1007/s00170-008-1637-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-008-1637-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016613783", 
              "https://doi.org/10.1007/s00170-008-1637-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-008-1875-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020114823", 
              "https://doi.org/10.1007/s00170-008-1875-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-008-1875-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020114823", 
              "https://doi.org/10.1007/s00170-008-1875-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-007-1095-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021161614", 
              "https://doi.org/10.1007/s00170-007-1095-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-007-1095-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021161614", 
              "https://doi.org/10.1007/s00170-007-1095-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11431-010-4046-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024609296", 
              "https://doi.org/10.1007/s11431-010-4046-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11431-010-4046-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024609296", 
              "https://doi.org/10.1007/s11431-010-4046-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.precisioneng.2005.11.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032482751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0890-6955(99)00114-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039345644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-3785(07)80058-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042596886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-006-0423-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051092815", 
              "https://doi.org/10.1007/s00170-006-0423-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-006-0423-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051092815", 
              "https://doi.org/10.1007/s00170-006-0423-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tim.2008.2009202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061637546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmech.2009.2020979", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061692499"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-08", 
        "datePublishedReg": "2012-08-01", 
        "description": "Tiny scale mold structural surface finishing is of high difficulty. In allusion to the problem, a new no-tool precision finishing method based on solid\u2013liquid two-phase softness abrasive flow (SAF) is brought forward. By setting restrained component for the structural surface machined, the restrained flow passage is constructed. Using the wall effect of SAF, no-tool precision finishing for tiny scale structural surface can be realized. According to the Nikuradse\u2019s experimental principles, the motion regulars of SAF are studied, and the friction coefficient formulas suited for SAF finishing are obtained. Taking U-shaped restrained flow passage as instance, standard k-\u03b5 model and Euler multiple-phase model are used to describe the SAF flow field, and the kinetic model of SAF is established based on discrete phase model. Then, the variation trends of SAF turbulent parameters and flow passage pressure distribution with different inlet velocities are acquired by semi-implicit method for pressure-linked equations consistent algorithm. Numerical simulation results derived that pressure attenuation of solid phase in flow passage is inversely proportional to inlet velocity, and the motion trails are disordered and stochastic, which are the sufficient conditions of SAF finishing. By analyzing pressure distribution and turbulent characteristics of SAF, the best finishing area in restrained flow passage is gained. Observational experiment of particles motion had been carried out; experimental results showed particles\u2019 motion satisfied requirements of SAF finishing, and feasibility of SAF could be proved theoretically. SAF experimental platform oriented to module structural surface finishing is constructed, and the nano-level finishing can be realized. Experiment results show that SAF method can increase mold structural surface precision more than ten times, and the roughness machined in Ra value is less than 62 nm.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00170-011-3621-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4905079", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4993894", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043671", 
            "issn": [
              "0268-3768", 
              "1433-3015"
            ], 
            "name": "The International Journal of Advanced Manufacturing Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9-12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "61"
          }
        ], 
        "name": "Softness abrasive flow method oriented to tiny scale mold structural surface", 
        "pagination": "975-987", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "fc2e2b3d099f78e3163027de03a88194c3351cbddf9bf3be20ce07436eed8953"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00170-011-3621-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1052942639"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00170-011-3621-y", 
          "https://app.dimensions.ai/details/publication/pub.1052942639"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45376_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00170-011-3621-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-011-3621-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-011-3621-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-011-3621-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-011-3621-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    124 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00170-011-3621-y schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N9b6c660467254d28b0b80e8d454b3884
    4 schema:citation sg:pub.10.1007/s00170-004-2334-x
    5 sg:pub.10.1007/s00170-006-0423-8
    6 sg:pub.10.1007/s00170-007-1095-8
    7 sg:pub.10.1007/s00170-008-1637-8
    8 sg:pub.10.1007/s00170-008-1875-9
    9 sg:pub.10.1007/s11431-010-4046-9
    10 https://doi.org/10.1016/j.ijmachtools.2005.03.006
    11 https://doi.org/10.1016/j.precisioneng.2005.11.012
    12 https://doi.org/10.1016/s0007-8506(07)60690-8
    13 https://doi.org/10.1016/s0167-3785(07)80058-3
    14 https://doi.org/10.1016/s0890-6955(99)00114-5
    15 https://doi.org/10.1109/tim.2008.2009202
    16 https://doi.org/10.1109/tmech.2009.2020979
    17 schema:datePublished 2012-08
    18 schema:datePublishedReg 2012-08-01
    19 schema:description Tiny scale mold structural surface finishing is of high difficulty. In allusion to the problem, a new no-tool precision finishing method based on solid–liquid two-phase softness abrasive flow (SAF) is brought forward. By setting restrained component for the structural surface machined, the restrained flow passage is constructed. Using the wall effect of SAF, no-tool precision finishing for tiny scale structural surface can be realized. According to the Nikuradse’s experimental principles, the motion regulars of SAF are studied, and the friction coefficient formulas suited for SAF finishing are obtained. Taking U-shaped restrained flow passage as instance, standard k-ε model and Euler multiple-phase model are used to describe the SAF flow field, and the kinetic model of SAF is established based on discrete phase model. Then, the variation trends of SAF turbulent parameters and flow passage pressure distribution with different inlet velocities are acquired by semi-implicit method for pressure-linked equations consistent algorithm. Numerical simulation results derived that pressure attenuation of solid phase in flow passage is inversely proportional to inlet velocity, and the motion trails are disordered and stochastic, which are the sufficient conditions of SAF finishing. By analyzing pressure distribution and turbulent characteristics of SAF, the best finishing area in restrained flow passage is gained. Observational experiment of particles motion had been carried out; experimental results showed particles’ motion satisfied requirements of SAF finishing, and feasibility of SAF could be proved theoretically. SAF experimental platform oriented to module structural surface finishing is constructed, and the nano-level finishing can be realized. Experiment results show that SAF method can increase mold structural surface precision more than ten times, and the roughness machined in Ra value is less than 62 nm.
    20 schema:genre research_article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N76357348a8cf4334a2dee5430ce7a090
    24 N785792f57e394eb99041963322034d72
    25 sg:journal.1043671
    26 schema:name Softness abrasive flow method oriented to tiny scale mold structural surface
    27 schema:pagination 975-987
    28 schema:productId N0c7b3ee1193b4249bdd9b3daedf582de
    29 N40a8a08b50e64bf49e8c02887401b66d
    30 N776c6ae8854640259cb7079968beb008
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052942639
    32 https://doi.org/10.1007/s00170-011-3621-y
    33 schema:sdDatePublished 2019-04-11T11:14
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N6696e7053a4845a5847924c4ea706101
    36 schema:url http://link.springer.com/10.1007%2Fs00170-011-3621-y
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N0c7b3ee1193b4249bdd9b3daedf582de schema:name readcube_id
    41 schema:value fc2e2b3d099f78e3163027de03a88194c3351cbddf9bf3be20ce07436eed8953
    42 rdf:type schema:PropertyValue
    43 N33b1ccf64ad04259a4bf7a8f47f88bba rdf:first sg:person.012130642732.30
    44 rdf:rest rdf:nil
    45 N40a8a08b50e64bf49e8c02887401b66d schema:name dimensions_id
    46 schema:value pub.1052942639
    47 rdf:type schema:PropertyValue
    48 N6696e7053a4845a5847924c4ea706101 schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 N76357348a8cf4334a2dee5430ce7a090 schema:issueNumber 9-12
    51 rdf:type schema:PublicationIssue
    52 N776c6ae8854640259cb7079968beb008 schema:name doi
    53 schema:value 10.1007/s00170-011-3621-y
    54 rdf:type schema:PropertyValue
    55 N785792f57e394eb99041963322034d72 schema:volumeNumber 61
    56 rdf:type schema:PublicationVolume
    57 N9b6c660467254d28b0b80e8d454b3884 rdf:first sg:person.010114452033.95
    58 rdf:rest Na1f3b5fad17a44f6b74bca38f087edd1
    59 Na1f3b5fad17a44f6b74bca38f087edd1 rdf:first sg:person.01046153163.59
    60 rdf:rest N33b1ccf64ad04259a4bf7a8f47f88bba
    61 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Engineering
    63 rdf:type schema:DefinedTerm
    64 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Interdisciplinary Engineering
    66 rdf:type schema:DefinedTerm
    67 sg:grant.4905079 http://pending.schema.org/fundedItem sg:pub.10.1007/s00170-011-3621-y
    68 rdf:type schema:MonetaryGrant
    69 sg:grant.4993894 http://pending.schema.org/fundedItem sg:pub.10.1007/s00170-011-3621-y
    70 rdf:type schema:MonetaryGrant
    71 sg:journal.1043671 schema:issn 0268-3768
    72 1433-3015
    73 schema:name The International Journal of Advanced Manufacturing Technology
    74 rdf:type schema:Periodical
    75 sg:person.010114452033.95 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
    76 schema:familyName Li
    77 schema:givenName Chen
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010114452033.95
    79 rdf:type schema:Person
    80 sg:person.01046153163.59 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
    81 schema:familyName Ji
    82 schema:givenName Shi-Ming
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046153163.59
    84 rdf:type schema:Person
    85 sg:person.012130642732.30 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
    86 schema:familyName Tan
    87 schema:givenName Da-Peng
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130642732.30
    89 rdf:type schema:Person
    90 sg:pub.10.1007/s00170-004-2334-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007910839
    91 https://doi.org/10.1007/s00170-004-2334-x
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/s00170-006-0423-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051092815
    94 https://doi.org/10.1007/s00170-006-0423-8
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/s00170-007-1095-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021161614
    97 https://doi.org/10.1007/s00170-007-1095-8
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/s00170-008-1637-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016613783
    100 https://doi.org/10.1007/s00170-008-1637-8
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/s00170-008-1875-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020114823
    103 https://doi.org/10.1007/s00170-008-1875-9
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/s11431-010-4046-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024609296
    106 https://doi.org/10.1007/s11431-010-4046-9
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/j.ijmachtools.2005.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003088708
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/j.precisioneng.2005.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032482751
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/s0007-8506(07)60690-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002032014
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/s0167-3785(07)80058-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042596886
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/s0890-6955(99)00114-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039345644
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1109/tim.2008.2009202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061637546
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1109/tmech.2009.2020979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061692499
    121 rdf:type schema:CreativeWork
    122 https://www.grid.ac/institutes/grid.469325.f schema:alternateName Zhejiang University of Technology
    123 schema:name Zhejiang Universtiy of Technology, Hangzhou, China
    124 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...