A new improved Laws-based descriptor for surface roughness evaluation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-08-20

AUTHORS

Enrique Alegre, Joaquín Barreiro, Sir Alexci Suárez-Castrillón

ABSTRACT

A new descriptor that allows to classify turned metallic parts based on their superficial roughness is proposed in this paper. The material used for the tests was AISI 6150 steel, regarded as one of the reference steels in the market. The proposed solution is based on a vision system that calculates the actual roughness by analysing texture on images of machined parts. A new developed R5SR5S kernel for quantifying roughness is based on the R5R5 mask presented by Laws. Results from computing standard deviation from images obtained with the proposed R5SR5S kernel allow us to classify the images with a hit rate of 95.87% using linear discriminant analysis and 97.30% using quadratic discriminant analysis. These results show that the proposed technique can be effectively used to evaluate roughness in machining processes. More... »

PAGES

605-615

References to SciGraph publications

  • 2009-01-01. Evaluation of three-dimensional surface roughness parameters based on digital image processing in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2004-03-25. The effects of machining process variables and tooling characterisation on the surface generation in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00170-011-3507-z

    DOI

    http://dx.doi.org/10.1007/s00170-011-3507-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1016414667


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Departamento de Ingenier\u00eda El\u00e9ctrica y de Sistemas y Autom\u00e1tica, Universidad de Le\u00f3n, Le\u00f3n, Spain", 
              "id": "http://www.grid.ac/institutes/grid.4807.b", 
              "name": [
                "Departamento de Ingenier\u00eda El\u00e9ctrica y de Sistemas y Autom\u00e1tica, Universidad de Le\u00f3n, Le\u00f3n, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alegre", 
            "givenName": "Enrique", 
            "id": "sg:person.016266057305.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266057305.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "\u00c1rea de Ingenier\u00eda de los Procesos de Fabricaci\u00f3n, Universidad de Le\u00f3n, Le\u00f3n, Spain", 
              "id": "http://www.grid.ac/institutes/grid.4807.b", 
              "name": [
                "\u00c1rea de Ingenier\u00eda de los Procesos de Fabricaci\u00f3n, Universidad de Le\u00f3n, Le\u00f3n, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barreiro", 
            "givenName": "Joaqu\u00edn", 
            "id": "sg:person.016704603071.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016704603071.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departamento de Ingenier\u00eda El\u00e9ctrica y de Sistemas y Autom\u00e1tica, Universidad de Le\u00f3n, Le\u00f3n, Spain", 
              "id": "http://www.grid.ac/institutes/grid.4807.b", 
              "name": [
                "Departamento de Ingenier\u00eda El\u00e9ctrica y de Sistemas y Autom\u00e1tica, Universidad de Le\u00f3n, Le\u00f3n, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Su\u00e1rez-Castrill\u00f3n", 
            "givenName": "Sir Alexci", 
            "id": "sg:person.015313222205.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015313222205.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00170-007-1357-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014760872", 
              "https://doi.org/10.1007/s00170-007-1357-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-003-1943-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007821309", 
              "https://doi.org/10.1007/s00170-003-1943-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-08-20", 
        "datePublishedReg": "2011-08-20", 
        "description": "A new descriptor that allows to classify turned metallic parts based on their superficial roughness is proposed in this paper. The material used for the tests was AISI 6150 steel, regarded as one of the reference steels in the market. The proposed solution is based on a vision system that calculates the actual roughness by analysing texture on images of machined parts. A new developed R5SR5S kernel for quantifying roughness is based on the R5R5 mask presented by Laws. Results from computing standard deviation from images obtained with the proposed R5SR5S kernel allow us to classify the images with a hit rate of 95.87% using linear discriminant analysis and 97.30% using quadratic discriminant analysis. These results show that the proposed technique can be effectively used to evaluate roughness in machining processes.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00170-011-3507-z", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043671", 
            "issn": [
              "0268-3768", 
              "1433-3015"
            ], 
            "name": "The International Journal of Advanced Manufacturing Technology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5-8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "59"
          }
        ], 
        "keywords": [
          "AISI 6150 steel", 
          "reference steel", 
          "metallic parts", 
          "machined parts", 
          "actual roughness", 
          "roughness", 
          "steel", 
          "surface roughness evaluation", 
          "superficial roughness", 
          "roughness evaluation", 
          "vision system", 
          "improved laws", 
          "materials", 
          "quantifying roughness", 
          "texture", 
          "standard deviation", 
          "images", 
          "law", 
          "solution", 
          "mask", 
          "results", 
          "process", 
          "technique", 
          "test", 
          "system", 
          "analysis", 
          "part", 
          "deviation", 
          "rate", 
          "quadratic discriminant analysis", 
          "kernel", 
          "evaluation", 
          "linear discriminant analysis", 
          "new descriptor", 
          "descriptors", 
          "market", 
          "discriminant analysis", 
          "hit rate", 
          "paper", 
          "R5SR5S kernel", 
          "R5R5 mask", 
          "new improved Laws"
        ], 
        "name": "A new improved Laws-based descriptor for surface roughness evaluation", 
        "pagination": "605-615", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1016414667"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00170-011-3507-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00170-011-3507-z", 
          "https://app.dimensions.ai/details/publication/pub.1016414667"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_530.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00170-011-3507-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-011-3507-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-011-3507-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-011-3507-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-011-3507-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    124 TRIPLES      22 PREDICATES      69 URIs      59 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00170-011-3507-z schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N3fd1cc11406749809243f52ac8ff5779
    4 schema:citation sg:pub.10.1007/s00170-003-1943-0
    5 sg:pub.10.1007/s00170-007-1357-5
    6 schema:datePublished 2011-08-20
    7 schema:datePublishedReg 2011-08-20
    8 schema:description A new descriptor that allows to classify turned metallic parts based on their superficial roughness is proposed in this paper. The material used for the tests was AISI 6150 steel, regarded as one of the reference steels in the market. The proposed solution is based on a vision system that calculates the actual roughness by analysing texture on images of machined parts. A new developed R5SR5S kernel for quantifying roughness is based on the R5R5 mask presented by Laws. Results from computing standard deviation from images obtained with the proposed R5SR5S kernel allow us to classify the images with a hit rate of 95.87% using linear discriminant analysis and 97.30% using quadratic discriminant analysis. These results show that the proposed technique can be effectively used to evaluate roughness in machining processes.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N4b03dba94ff04fa5af749b071ee10c32
    13 Nfba66a2338c148429832b2aa267f038e
    14 sg:journal.1043671
    15 schema:keywords AISI 6150 steel
    16 R5R5 mask
    17 R5SR5S kernel
    18 actual roughness
    19 analysis
    20 descriptors
    21 deviation
    22 discriminant analysis
    23 evaluation
    24 hit rate
    25 images
    26 improved laws
    27 kernel
    28 law
    29 linear discriminant analysis
    30 machined parts
    31 market
    32 mask
    33 materials
    34 metallic parts
    35 new descriptor
    36 new improved Laws
    37 paper
    38 part
    39 process
    40 quadratic discriminant analysis
    41 quantifying roughness
    42 rate
    43 reference steel
    44 results
    45 roughness
    46 roughness evaluation
    47 solution
    48 standard deviation
    49 steel
    50 superficial roughness
    51 surface roughness evaluation
    52 system
    53 technique
    54 test
    55 texture
    56 vision system
    57 schema:name A new improved Laws-based descriptor for surface roughness evaluation
    58 schema:pagination 605-615
    59 schema:productId N1669a490cb504246947bea6d460b2d1b
    60 N6e85e79c91dd40449ce236a58e712de5
    61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016414667
    62 https://doi.org/10.1007/s00170-011-3507-z
    63 schema:sdDatePublished 2021-12-01T19:24
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher Na0e9e164c7794a7d8a13d6b5e5a2f5c0
    66 schema:url https://doi.org/10.1007/s00170-011-3507-z
    67 sgo:license sg:explorer/license/
    68 sgo:sdDataset articles
    69 rdf:type schema:ScholarlyArticle
    70 N1669a490cb504246947bea6d460b2d1b schema:name dimensions_id
    71 schema:value pub.1016414667
    72 rdf:type schema:PropertyValue
    73 N3fd1cc11406749809243f52ac8ff5779 rdf:first sg:person.016266057305.75
    74 rdf:rest N75bee4d76c2442c1b90d59e29e032991
    75 N4b03dba94ff04fa5af749b071ee10c32 schema:volumeNumber 59
    76 rdf:type schema:PublicationVolume
    77 N4ba619af960542f59b66c63b0854d1b3 rdf:first sg:person.015313222205.20
    78 rdf:rest rdf:nil
    79 N6e85e79c91dd40449ce236a58e712de5 schema:name doi
    80 schema:value 10.1007/s00170-011-3507-z
    81 rdf:type schema:PropertyValue
    82 N75bee4d76c2442c1b90d59e29e032991 rdf:first sg:person.016704603071.24
    83 rdf:rest N4ba619af960542f59b66c63b0854d1b3
    84 Na0e9e164c7794a7d8a13d6b5e5a2f5c0 schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 Nfba66a2338c148429832b2aa267f038e schema:issueNumber 5-8
    87 rdf:type schema:PublicationIssue
    88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Engineering
    90 rdf:type schema:DefinedTerm
    91 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Materials Engineering
    93 rdf:type schema:DefinedTerm
    94 sg:journal.1043671 schema:issn 0268-3768
    95 1433-3015
    96 schema:name The International Journal of Advanced Manufacturing Technology
    97 schema:publisher Springer Nature
    98 rdf:type schema:Periodical
    99 sg:person.015313222205.20 schema:affiliation grid-institutes:grid.4807.b
    100 schema:familyName Suárez-Castrillón
    101 schema:givenName Sir Alexci
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015313222205.20
    103 rdf:type schema:Person
    104 sg:person.016266057305.75 schema:affiliation grid-institutes:grid.4807.b
    105 schema:familyName Alegre
    106 schema:givenName Enrique
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266057305.75
    108 rdf:type schema:Person
    109 sg:person.016704603071.24 schema:affiliation grid-institutes:grid.4807.b
    110 schema:familyName Barreiro
    111 schema:givenName Joaquín
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016704603071.24
    113 rdf:type schema:Person
    114 sg:pub.10.1007/s00170-003-1943-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007821309
    115 https://doi.org/10.1007/s00170-003-1943-0
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s00170-007-1357-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014760872
    118 https://doi.org/10.1007/s00170-007-1357-5
    119 rdf:type schema:CreativeWork
    120 grid-institutes:grid.4807.b schema:alternateName Departamento de Ingeniería Eléctrica y de Sistemas y Automática, Universidad de León, León, Spain
    121 Área de Ingeniería de los Procesos de Fabricación, Universidad de León, León, Spain
    122 schema:name Departamento de Ingeniería Eléctrica y de Sistemas y Automática, Universidad de León, León, Spain
    123 Área de Ingeniería de los Procesos de Fabricación, Universidad de León, León, Spain
    124 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...