A evaluation of surface roughness classes by computer vision using wavelet transform in the frequency domain View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-07-07

AUTHORS

Patricia Morala-Argüello, Joaquín Barreiro, Enrique Alegre

ABSTRACT

This paper presents a multiresolution method based on the processing of surface images for unmanned visual quality inspection and surface roughness discrimination in turning. Sixteen machining tests were carried out using a constant depth of cut at 1.5 mm and different values for feed rate, in particular 0.15, 0.25, 0.4, and 0.5 mm/rev; cutting speed values were 250, 280, 320, and 350 m/min. With these cutting parameters, the roughness average values achieved covered a significant range between 0.8–14 μm. The methodology proposed is based on the extraction of texture features from part surface images in the frequency domain using wavelet transform. In particular, one-level Haar wavelet transform is applied to the original surface images obtaining four sub-images: a smooth sub-image, a horizontal detail sub-image, a vertical detail sub-image, and a diagonal detail sub-image. These images are used for the extraction of features. Surface evaluation was accomplished by means of the analysis of gray levels in the vertical detail sub-image. Finally, a texture classification was performed by a multilayer Perceptron artificial neural network. Experimental results show that the proposed approach achieves error rates between 2.59% and 4.17%. More... »

PAGES

213-220

References to SciGraph publications

  • 2009-08-27. Prediction of surface roughness and dimensional deviation of workpiece in turning: a machine vision approach in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2010-04-23. Prediction of surface roughness in turning operations by computer vision using neural network trained by differential evolution algorithm in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2009-05-28. Noncontact roughness measurement of turned parts using machine vision in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2002-02. A Study of Computer Vision for Measuring Surface Roughness in the Turning Process in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00170-011-3480-6

    DOI

    http://dx.doi.org/10.1007/s00170-011-3480-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032857498


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Escuela de Ingenier\u00edas Industrial e Inform\u00e1tica, University of Le\u00f3n, 24071, Le\u00f3n, Spain", 
              "id": "http://www.grid.ac/institutes/grid.4807.b", 
              "name": [
                "Escuela de Ingenier\u00edas Industrial e Inform\u00e1tica, University of Le\u00f3n, 24071, Le\u00f3n, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Morala-Arg\u00fcello", 
            "givenName": "Patricia", 
            "id": "sg:person.015153075677.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015153075677.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Escuela de Ingenier\u00edas Industrial e Inform\u00e1tica, University of Le\u00f3n, 24071, Le\u00f3n, Spain", 
              "id": "http://www.grid.ac/institutes/grid.4807.b", 
              "name": [
                "Escuela de Ingenier\u00edas Industrial e Inform\u00e1tica, University of Le\u00f3n, 24071, Le\u00f3n, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barreiro", 
            "givenName": "Joaqu\u00edn", 
            "id": "sg:person.016704603071.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016704603071.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Escuela de Ingenier\u00edas Industrial e Inform\u00e1tica, University of Le\u00f3n, 24071, Le\u00f3n, Spain", 
              "id": "http://www.grid.ac/institutes/grid.4807.b", 
              "name": [
                "Escuela de Ingenier\u00edas Industrial e Inform\u00e1tica, University of Le\u00f3n, 24071, Le\u00f3n, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alegre", 
            "givenName": "Enrique", 
            "id": "sg:person.016266057305.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266057305.75"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00170-010-2668-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036425301", 
              "https://doi.org/10.1007/s00170-010-2668-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001700200038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023579443", 
              "https://doi.org/10.1007/s001700200038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-009-2101-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014255045", 
              "https://doi.org/10.1007/s00170-009-2101-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-009-2260-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000622666", 
              "https://doi.org/10.1007/s00170-009-2260-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-07-07", 
        "datePublishedReg": "2011-07-07", 
        "description": "This paper presents a multiresolution method based on the processing of surface images for unmanned visual quality inspection and surface roughness discrimination in turning. Sixteen machining tests were carried out using a constant depth of cut at 1.5\u00a0mm and different values for feed rate, in particular 0.15, 0.25, 0.4, and 0.5\u00a0mm/rev; cutting speed values were 250, 280, 320, and 350\u00a0m/min. With these cutting parameters, the roughness average values achieved covered a significant range between 0.8\u201314\u00a0\u03bcm. The methodology proposed is based on the extraction of texture features from part surface images in the frequency domain using wavelet transform. In particular, one-level Haar wavelet transform is applied to the original surface images obtaining four sub-images: a smooth sub-image, a horizontal detail sub-image, a vertical detail sub-image, and a diagonal detail sub-image. These images are used for the extraction of features. Surface evaluation was accomplished by means of the analysis of gray levels in the vertical detail sub-image. Finally, a texture classification was performed by a multilayer Perceptron artificial neural network. Experimental results show that the proposed approach achieves error rates between 2.59% and 4.17%.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00170-011-3480-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043671", 
            "issn": [
              "0268-3768", 
              "1433-3015"
            ], 
            "name": "The International Journal of Advanced Manufacturing Technology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "59"
          }
        ], 
        "keywords": [
          "wavelet transform", 
          "vertical details", 
          "visual quality inspection", 
          "multilayer perceptron artificial neural network", 
          "perceptron artificial neural network", 
          "one-level Haar wavelet transform", 
          "Haar wavelet transform", 
          "artificial neural network", 
          "extraction of features", 
          "surface roughness discrimination", 
          "surface images", 
          "computer vision", 
          "diagonal details", 
          "neural network", 
          "texture features", 
          "horizontal detail", 
          "texture classification", 
          "quality inspection", 
          "multiresolution method", 
          "gray levels", 
          "frequency domain", 
          "error rate", 
          "surface roughness classes", 
          "images", 
          "experimental results", 
          "transform", 
          "network", 
          "extraction", 
          "roughness discrimination", 
          "domain", 
          "features", 
          "vision", 
          "classification", 
          "processing", 
          "roughness classes", 
          "detail", 
          "inspection", 
          "machining tests", 
          "speed values", 
          "feed rate", 
          "roughness average (Ra) values", 
          "methodology", 
          "constant depth", 
          "evaluation", 
          "surface evaluation", 
          "method", 
          "class", 
          "different values", 
          "means", 
          "results", 
          "significant range", 
          "parameters", 
          "average value", 
          "cut", 
          "values", 
          "analysis", 
          "depth", 
          "Rev", 
          "rate", 
          "test", 
          "range", 
          "discrimination", 
          "levels", 
          "approach", 
          "min", 
          "paper", 
          "unmanned visual quality inspection", 
          "part surface images", 
          "original surface images"
        ], 
        "name": "A evaluation of surface roughness classes by computer vision using wavelet transform in the frequency domain", 
        "pagination": "213-220", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032857498"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00170-011-3480-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00170-011-3480-6", 
          "https://app.dimensions.ai/details/publication/pub.1032857498"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_549.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00170-011-3480-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00170-011-3480-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00170-011-3480-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00170-011-3480-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00170-011-3480-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    157 TRIPLES      22 PREDICATES      98 URIs      86 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00170-011-3480-6 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N96b68918164b4c8ca8f01843bf67f101
    4 schema:citation sg:pub.10.1007/s00170-009-2101-0
    5 sg:pub.10.1007/s00170-009-2260-z
    6 sg:pub.10.1007/s00170-010-2668-5
    7 sg:pub.10.1007/s001700200038
    8 schema:datePublished 2011-07-07
    9 schema:datePublishedReg 2011-07-07
    10 schema:description This paper presents a multiresolution method based on the processing of surface images for unmanned visual quality inspection and surface roughness discrimination in turning. Sixteen machining tests were carried out using a constant depth of cut at 1.5 mm and different values for feed rate, in particular 0.15, 0.25, 0.4, and 0.5 mm/rev; cutting speed values were 250, 280, 320, and 350 m/min. With these cutting parameters, the roughness average values achieved covered a significant range between 0.8–14 μm. The methodology proposed is based on the extraction of texture features from part surface images in the frequency domain using wavelet transform. In particular, one-level Haar wavelet transform is applied to the original surface images obtaining four sub-images: a smooth sub-image, a horizontal detail sub-image, a vertical detail sub-image, and a diagonal detail sub-image. These images are used for the extraction of features. Surface evaluation was accomplished by means of the analysis of gray levels in the vertical detail sub-image. Finally, a texture classification was performed by a multilayer Perceptron artificial neural network. Experimental results show that the proposed approach achieves error rates between 2.59% and 4.17%.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N6f503300ed38440ba0eb0f9ac2117280
    15 N97cb620794344e3598485c311eee6160
    16 sg:journal.1043671
    17 schema:keywords Haar wavelet transform
    18 Rev
    19 analysis
    20 approach
    21 artificial neural network
    22 average value
    23 class
    24 classification
    25 computer vision
    26 constant depth
    27 cut
    28 depth
    29 detail
    30 diagonal details
    31 different values
    32 discrimination
    33 domain
    34 error rate
    35 evaluation
    36 experimental results
    37 extraction
    38 extraction of features
    39 features
    40 feed rate
    41 frequency domain
    42 gray levels
    43 horizontal detail
    44 images
    45 inspection
    46 levels
    47 machining tests
    48 means
    49 method
    50 methodology
    51 min
    52 multilayer perceptron artificial neural network
    53 multiresolution method
    54 network
    55 neural network
    56 one-level Haar wavelet transform
    57 original surface images
    58 paper
    59 parameters
    60 part surface images
    61 perceptron artificial neural network
    62 processing
    63 quality inspection
    64 range
    65 rate
    66 results
    67 roughness average (Ra) values
    68 roughness classes
    69 roughness discrimination
    70 significant range
    71 speed values
    72 surface evaluation
    73 surface images
    74 surface roughness classes
    75 surface roughness discrimination
    76 test
    77 texture classification
    78 texture features
    79 transform
    80 unmanned visual quality inspection
    81 values
    82 vertical details
    83 vision
    84 visual quality inspection
    85 wavelet transform
    86 schema:name A evaluation of surface roughness classes by computer vision using wavelet transform in the frequency domain
    87 schema:pagination 213-220
    88 schema:productId Ncb7d414728a84aa18ce05418c63c18e5
    89 Nde9cabfc43634b60beb8e6c41433a5ed
    90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032857498
    91 https://doi.org/10.1007/s00170-011-3480-6
    92 schema:sdDatePublished 2021-12-01T19:26
    93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    94 schema:sdPublisher Ndf32ff2e2ace441985261f1962dc1845
    95 schema:url https://doi.org/10.1007/s00170-011-3480-6
    96 sgo:license sg:explorer/license/
    97 sgo:sdDataset articles
    98 rdf:type schema:ScholarlyArticle
    99 N153d8a25656842fe92580d71179d9762 rdf:first sg:person.016266057305.75
    100 rdf:rest rdf:nil
    101 N6f503300ed38440ba0eb0f9ac2117280 schema:volumeNumber 59
    102 rdf:type schema:PublicationVolume
    103 N75e3823d4fec44238c3f08ae203542a9 rdf:first sg:person.016704603071.24
    104 rdf:rest N153d8a25656842fe92580d71179d9762
    105 N96b68918164b4c8ca8f01843bf67f101 rdf:first sg:person.015153075677.06
    106 rdf:rest N75e3823d4fec44238c3f08ae203542a9
    107 N97cb620794344e3598485c311eee6160 schema:issueNumber 1-4
    108 rdf:type schema:PublicationIssue
    109 Ncb7d414728a84aa18ce05418c63c18e5 schema:name doi
    110 schema:value 10.1007/s00170-011-3480-6
    111 rdf:type schema:PropertyValue
    112 Nde9cabfc43634b60beb8e6c41433a5ed schema:name dimensions_id
    113 schema:value pub.1032857498
    114 rdf:type schema:PropertyValue
    115 Ndf32ff2e2ace441985261f1962dc1845 schema:name Springer Nature - SN SciGraph project
    116 rdf:type schema:Organization
    117 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Information and Computing Sciences
    119 rdf:type schema:DefinedTerm
    120 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Artificial Intelligence and Image Processing
    122 rdf:type schema:DefinedTerm
    123 sg:journal.1043671 schema:issn 0268-3768
    124 1433-3015
    125 schema:name The International Journal of Advanced Manufacturing Technology
    126 schema:publisher Springer Nature
    127 rdf:type schema:Periodical
    128 sg:person.015153075677.06 schema:affiliation grid-institutes:grid.4807.b
    129 schema:familyName Morala-Argüello
    130 schema:givenName Patricia
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015153075677.06
    132 rdf:type schema:Person
    133 sg:person.016266057305.75 schema:affiliation grid-institutes:grid.4807.b
    134 schema:familyName Alegre
    135 schema:givenName Enrique
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266057305.75
    137 rdf:type schema:Person
    138 sg:person.016704603071.24 schema:affiliation grid-institutes:grid.4807.b
    139 schema:familyName Barreiro
    140 schema:givenName Joaquín
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016704603071.24
    142 rdf:type schema:Person
    143 sg:pub.10.1007/s00170-009-2101-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014255045
    144 https://doi.org/10.1007/s00170-009-2101-0
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s00170-009-2260-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1000622666
    147 https://doi.org/10.1007/s00170-009-2260-z
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s00170-010-2668-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036425301
    150 https://doi.org/10.1007/s00170-010-2668-5
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s001700200038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023579443
    153 https://doi.org/10.1007/s001700200038
    154 rdf:type schema:CreativeWork
    155 grid-institutes:grid.4807.b schema:alternateName Escuela de Ingenierías Industrial e Informática, University of León, 24071, León, Spain
    156 schema:name Escuela de Ingenierías Industrial e Informática, University of León, 24071, León, Spain
    157 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...